Chloroxide

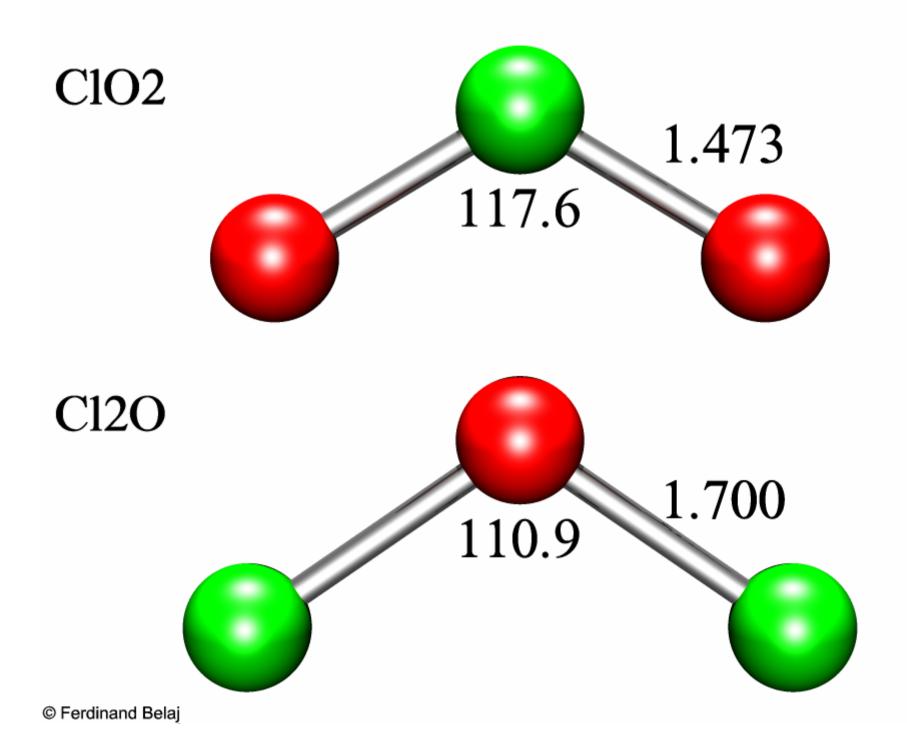
Cl₂O: gelbrotes Gas, explodiert beim Erhitzen oder durch Funken

in H₂O gut löslich (140g/100ml):

$$Cl_2O + H_2O \Leftrightarrow 2HOCl \qquad (\Rightarrow Anhydrid von HOCl)$$

Darstellung im Labor:

$$2Cl_2 + 2HgO \implies Cl_2O + HgO \cdot HgCl_2$$


Technische Darstellung:

$$2Cl_2 + 2Na_2CO_3 + H_2O \implies 2NaHCO_3 + 2NaCl + Cl_2O(g)$$

Verwendung:

als Oxidationsmittel zum Bleichen von Holzmelasse zur Wasseraufbereitung

Großteil zur Darstellung von Hypochloriten, besonders von Ca(OCl)₂

ClO₂: wichtigstes Chloroxid

gelbes Gas; Flüssigkeit und Festkörper dunkelrot

Fl. explodiert oberhalb von -40°C, trotzdem >100.000t/Jahr in USA paramagnetisch: ungerade e - Anzahl (19; isoelektronisch mit O₃ -) zeigt trotzdem bei RT - wie NO - keine Dimerisierungsneigung:

$$/\underline{O} = \underbrace{\overset{\bullet}{Cl}}_{Q} \oplus \underbrace{\overset{\bullet}{O}}_{Q} \oplus \underbrace{\overset{\bullet}{Cl}}_{Q} \oplus \underbrace{\overset$$

Cl—O 1.473Å (vgl. 1.700Å in Cl₂O oder 1.405Å in Cl₂O₇)

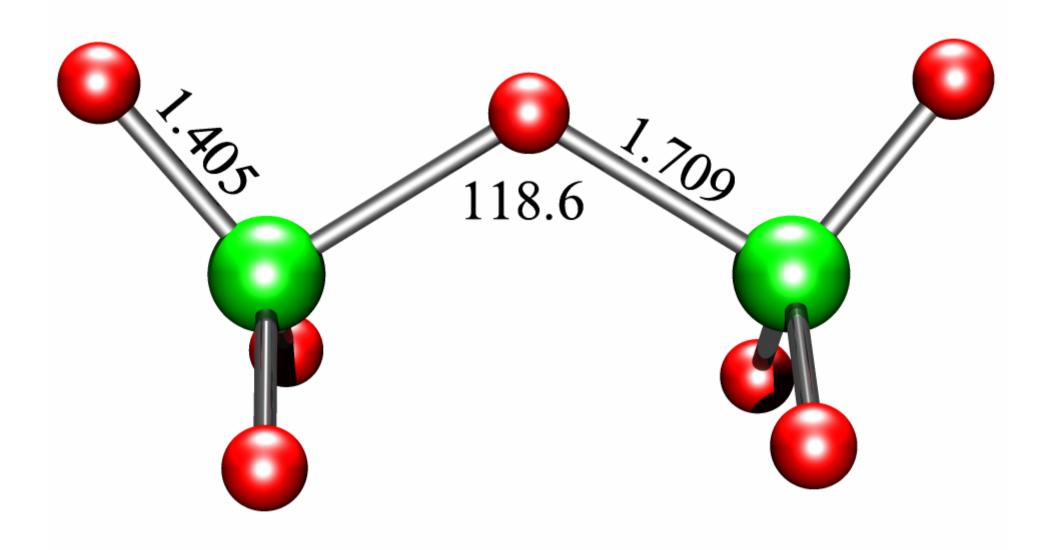
bei T < -150°C: fest, dimer, diamagnetisch

Darstellung: $3KClO_3 + 3H_2SO_4$ (conc., $0^{\circ}C$) $\Rightarrow 3KHSO_4 + 3HClO_3$ $\Rightarrow 2ClO_2 + [H_3O][ClO_4]$

technisch: $2\text{NaClO}_3 + \text{SO}_2 + \text{H}_2\text{SO}_4 \implies 2\text{ClO}_2 + 2\text{NaHSO}_4$

Alkalische Disproport.: $2ClO_2 + 2OH^- \Rightarrow ClO_2^- + ClO_3^- + H_2O$

Verwendung: Oxidative Desinfektion und Reinigung von Trinkwasser, Bleichung von Papier


Cl₂O₃: explodiert auch unterhalb 0°C

Cl₂O₄: gemischtvalente Verbindung (s. I₂O₄)

 Cl_2O_6 : nicht sehr stabil: $\text{Cl}_2\text{O}_6 \Rightarrow \text{ClO}_2 + \text{O}_2$ paramagnetisches $\cdot \text{ClO}_3$ (g) \Leftrightarrow diamagnetisches Cl_2O_6 (s) festes Cl_2O_6 : nicht $\text{O}_3\text{Cl-ClO}_3$, sondern $[\text{ClO}_2^+][\text{ClO}_4^-]$ Darstellung: $2\text{ClO}_2 + 2\text{O}_3 \Rightarrow \text{Cl}_2\text{O}_6 + 2\text{O}_2$ Hydrolyse: $\text{Cl}_2\text{O}_6 + \text{H}_2\text{O} \Rightarrow \text{HClO}_3 + \text{HClO}_4$

 Cl_2O_7 : beständigstes Chloroxid; farblose ölige Flüssigkeit (K_p 81°C) destillierbar (bei -35°C, 1mbar), aber stoßempfindlich (!) thermischer Zerfall (explosionsartig): $\text{Cl}_2\text{O}_7 \Rightarrow \text{ClO}_3 + \text{ClO}_4$ als Anhydrid von HClO_4 darstellbar: $2\text{HClO}_4 + P_4\text{O}_{10} \Rightarrow \text{Cl}_2\text{O}_7 + 2\text{HPO}_3$ (abdestillieren von der polymeren Metaphosphorsäure)

C12O7

Bromoxide

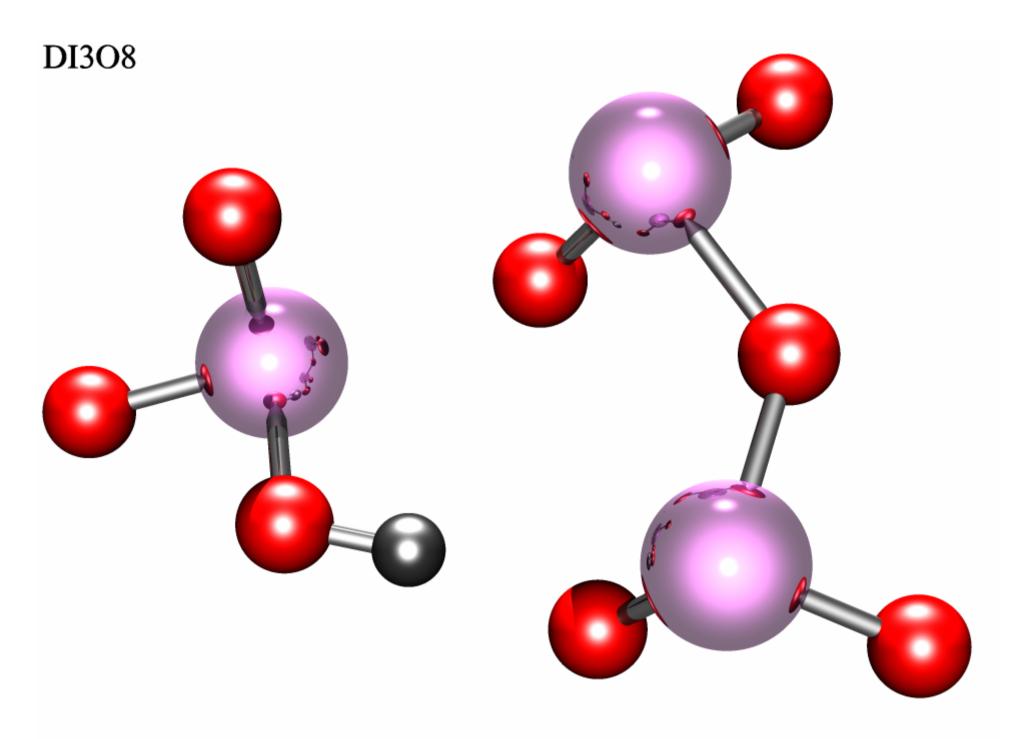
weniger zahlreich, weniger gut untersucht, keine Bedeutung bekannt: Br₂O, Br₂O₃, BrO₂, Br₂O₅

Iodoxide

I₂O₅: Anhydrid von HIO₃: wichtigstes Iodoxid

Darstellung durch thermisches Entwässern:

$$2HIO_3 \Rightarrow I_2O_5 + H_2O$$


oxidiert CO bei 20°C rasch und vollständig:

[CO]-Bestimmung in Luft oder Gasmischungen:

$$5\text{CO} + \text{I}_2\text{O}_5 \implies \text{I}_2 + 5\text{CO}_2$$
 (Iodometrie)

farblos, hygroskopisch (+ $H_2O \implies HI_3O_8 = I_2O_5 \cdot HIO_3$) stabil bis 300°C

handelsübliches I₂O₅ besteht fast ausschließlich aus <u>HI₃O</u>₈

Hypochlorige Säure HOCl

```
"Chlorwasser": Cl_2 + H_2O \Leftrightarrow HCl + HOCl
Darstellung: 2Cl_2 + 3HgO + H_2O \implies HgCl_2 \cdot 2HgO + 2HOCl
   Cl_2 + 2NaOH \Rightarrow NaCl + NaOCl + H_2O
   Cl_2 + Ca(OH)_2 \Rightarrow CaCl(OCl) + H_2O (Chlorkalk)
nur wässrige Lösungen existent: 2HOCl ⇔ Cl<sub>2</sub>O + H<sub>2</sub>O
Zersetzung durch Licht: 2HOC1 \implies 2HC1 + O_2
   oder Alkalien: 3HOCl + 2NaOH \Rightarrow 2NaCl + 2H_2O + HClO_3
starkes Oxidationsmittel: a) [HOC1 \Rightarrow HC1 + O]
   SO_3^{-2} \Rightarrow SO_4^{-2}; NO_2^- \Rightarrow NO_3^-; PbS \Rightarrow PbSO_4; Br^- \Rightarrow BrO_3^-
   b) [HOCl \Rightarrow Cl^+ + OH^-]
             NH_3 \Rightarrow NH_2Cl; CN^- \Rightarrow ClCN
sehr schwache Säure (K_s = 3.10^{-8})
Verwendung: NaOCl, CaCl(OCl), Ca(OCl)<sub>2</sub>·2H<sub>2</sub>O:
   Bleichen (Zellstoff, Textilien), Desinfektion (Schwimmbad)
```

Chlorige Säure HClO₂

Darstellung: Ba(ClO₂)₂ + H₂SO₄ \Rightarrow BaSO₄ + 2HClO₂

in saurer Lösung rasche Zersetzung:

$$5HClO_2 \Rightarrow 4ClO_2 + HCl + H_2O$$

beständiger sind die Chlorite:

$$2ClO_2 + 2NaOH \implies NaClO_2 + NaClO_3 + H_2O$$

frei von Chloraten durch H₂O₂ als Reduktionsmittel:

$$2ClO_2 + 2NaOH + H_2O_2 \implies 2NaClO_2 + O_2 + H_2O$$

starkes Oxidationsmittel:

mit org. Substanzen, C-, S_8 -Pulver explosible Gemische gelbes $AgClO_2$, gelbes $Pb(ClO_2)_2$: Explosion durch Schlag, ΔH

Verwendung: NaClO₂ als Bleichmittel (durch ClO₂-Bildung)

Chlorsäure HClO₃

Darstellung: $Ba(ClO_3)_2 + H_2SO_4 \Rightarrow BaSO_4 + 2HClO_3$ $2HOCl + ClO^- \Rightarrow 2HCl + ClO_3^- \quad [ClO^- + HCl \Rightarrow HOCl + Cl^-]$ $3Cl_2 + 6NaOH \{hei\beta\} \Rightarrow NaClO_3 + 5NaCl + 3H_2O$ technisch (Elektrolyse einer heißen NaCl-Lösung): $NaCl + 3H_2O \Rightarrow NaClO_3 + 3H_2$

Starke Säure (pK_S = -2.7):

kann nur bis 40% konzentriert werden, sonst Zersetzung (in HClO₄, ClO₂, Cl₂, H₂O, O₂)

Alkalichlorate: farblos, wasserlöslich, stabil bei RT

Feste Gemenge mit oxidierbaren Substanzen (P, S, organ. Verb.) explodieren beim Verreiben; Blitzlicht (Mg + Chlorat)

HClO₃: sehr starkes Oxidationsmittel (im sauren Bereich): Papier oder Holzspan entflammen von selbst

$$S_8 + HClO_3 \Rightarrow H_2SO_4$$

 $ClO_3^- + 5Cl^- + 6H_3O^+ \Rightarrow 3Cl_2 + 9H_2O$
 $2ClO_3^- + 10Br^- + 12H_3O^+ \Rightarrow 5Br_2 + Cl_2 + 18H_2O$

Analytik:

"Euchlorin" (40% HClO₃+38% HCl) zerstört organische Verb.

Verwendung:

KClO₃: Zündhölzer, Pyrotechnik, Sprengstoffindustrie

NaClO₃: Unkrautbekämpfung, Oxidationsmittel, Perchlorate, ClO₂

Bromsäure HBrO₃

Darstellung:

$$Ba(BrO_3)_2 + H_2SO_4 \text{ verd.} \implies BaSO_4 + 2HBrO_3$$

$$3Br_2 + 6NaOH \{hei\beta\} \Rightarrow NaBrO_3 + 5NaBr + 3H_2O (vgl. NaClO_3)$$

$$NaBr + 3Cl_2 + 6NaOH \{hei\beta\} \implies NaBrO_3 + 6NaCl + 3H_2O$$

max. 50% HBrO₃, sonst Zersetzung:

$$4HBrO_3 \Rightarrow 2Br_2 + 5O_2 + 2H_2O$$

Verwendung für Redoxtitrationen (Bromatometrie):

$$NO_{2}^{-} \Rightarrow NO_{3}^{-}$$
, $Sb(III) \Rightarrow Sb(V)$, $Sn(II) \Rightarrow Sn(IV)$

Iodsäure HIO₃

Darstellung:

$$3I_2 + 6NaOH \{hei\beta\} \Rightarrow NaIO_3 + 5NaI + 3H_2O (vgl. NaClO_3)$$

Oxidation von I₂ mit HNO₃ conc., H₂O₂, O₃, Cl₂

$$NaIO_3 + H_2SO_4 \implies HIO_3 + NaHSO_4$$

100% HIO₃:

bei RT beständige Kristalle, mittelstarke Säure ($pK_S = 0.80$)

Iodate auch beständiger als Chlorate, Bromate (KIO₃ bis 500°C)

mit brennbaren Substanzen aber auch Explosion durch Schlag

kräftige Oxidationsmittel:
$$2X^- \Rightarrow X_2$$
 (X = Cl, Br, I)

Landolt-Reaktion (Zeitreaktion):

$$IO_3^- + 3SO_3^{-2} \implies I^- + 3SO_4^{-2}$$
 (langsam)

$$IO_3^- + 5I^- + 6H^+ \Rightarrow 3I_2 + 3H_2O$$
 (langsam)

$$3I_2 + 2SO_3^{-2} + H_2O \implies 6I^- + 6H^+ + 3SO_4^{-2}$$
 (schnell)

Perchlorsäure HClO₄

```
Darstellung: 4KClO_3 \{\Delta\} \Rightarrow KCl + 3KClO_4 \quad [\{\Delta\} \Rightarrow KCl + 2O_2]
technisch (anodische Oxidation): ClO_3^- + H_2O \Rightarrow ClO_4^- + 2H^+ + 2e^-
   Cl_2 + 8H_2O \implies 2ClO_4^- + 16H^+ + 14e^-
100% Säure durch Destillation (über rauchender H<sub>2</sub>SO<sub>4</sub>):
   NaClO_4 + HCl conc. \Rightarrow NaCl + HClO_4
   bewegliche Flüssigkeit (F_p = -112^{\circ}C, K_p = 130^{\circ}C)
72% : ölige Flüssigkeit (K_p = 203°C)
Monohydrat = Oxoniumperchlorat [H_3O^+][ClO_4^-]: F_p = 50^{\circ}C
Eigenschaften: explosive Selbstzersetzung möglich
   detoniert mit organischen Substanzen, Holz, Papier, ...
   in verdünnter Lösung beständiger als HClO<sub>3</sub>
   eine der stärksten Säuren: pK_s = -10
Verwendung:
   KClO<sub>4</sub>: Feuerwerkskörper, Signalraketen (mit Mg)
   NH<sub>4</sub>ClO<sub>4</sub>: 700t/Space Shuttle-Start (75% der Feststoffraketen)
```

Perbromsäure HBrO₄

erstmals 1968 durch radiochemische Synthese:

$$^{83}\text{SeO}_4^{2-}(-\beta^-, \tau=22\text{min}) \implies ^{83}\text{BrO}_4^{-}(-\beta^-, \tau=2,4\text{h}) \implies ^{83}\text{Kr} + 2\text{O}_2$$

sehr hohes E°_{Ox}:

$$BrO_4^- + 2H^+ + 2e^- \Rightarrow BrO_3^- + H_2O$$
 $E^{\circ}_{Ox} = +1.74V$ (vgl.: ClO_4^- : 1.23V, IO_4^- : 1.64V \Rightarrow stärkste Ox-mittel nötig)

Darstellung:

$$BrO_3^- + XeF_2 + H_2O \implies (10\%) BrO_4^- + Xe + 2HF$$

$$BrO_3^- + F_2 + 2OH^- \Rightarrow (20\%) BrO_4^- + 2F^- + H_2O$$

 $\Rightarrow verd HBrO_durch Kationanaustauscher$

⇒ verd. HBrO₄ durch Kationenaustauscher

Eigenschaften:

HBrO₄ kann ohne Zersetzung bis 55% eingeengt werden bis 100°C über längere Zeit stabil

Periodsäuren und periodate

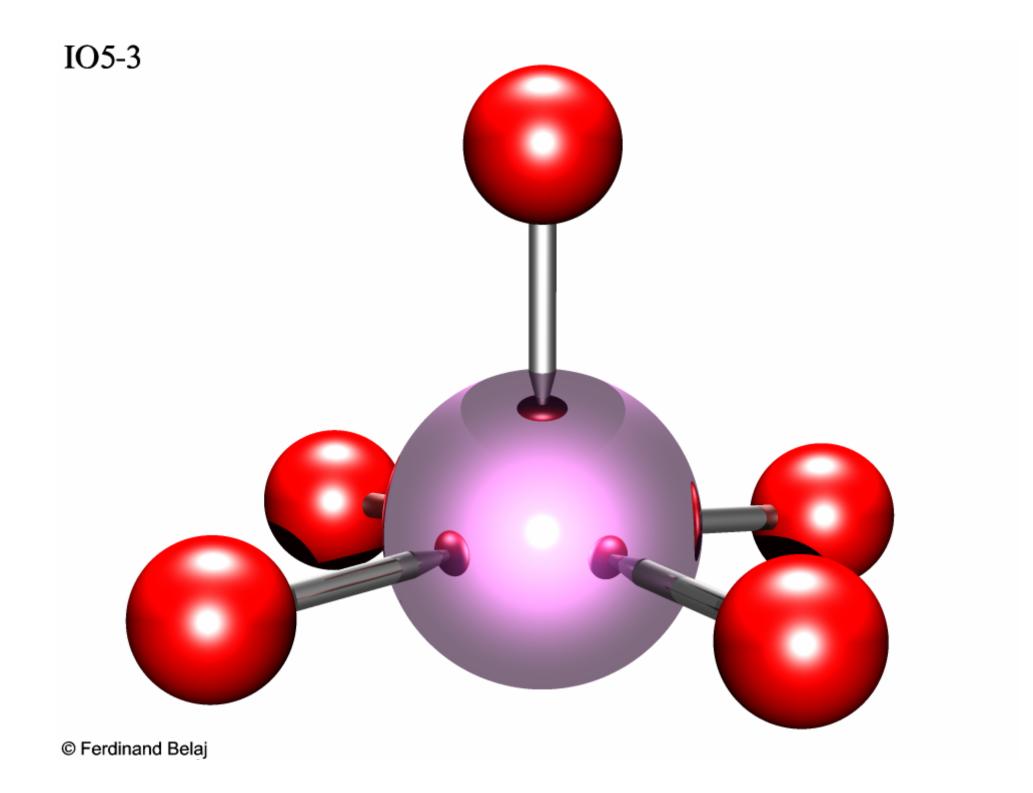
Periodsäure HIO₄ tetraedrisch

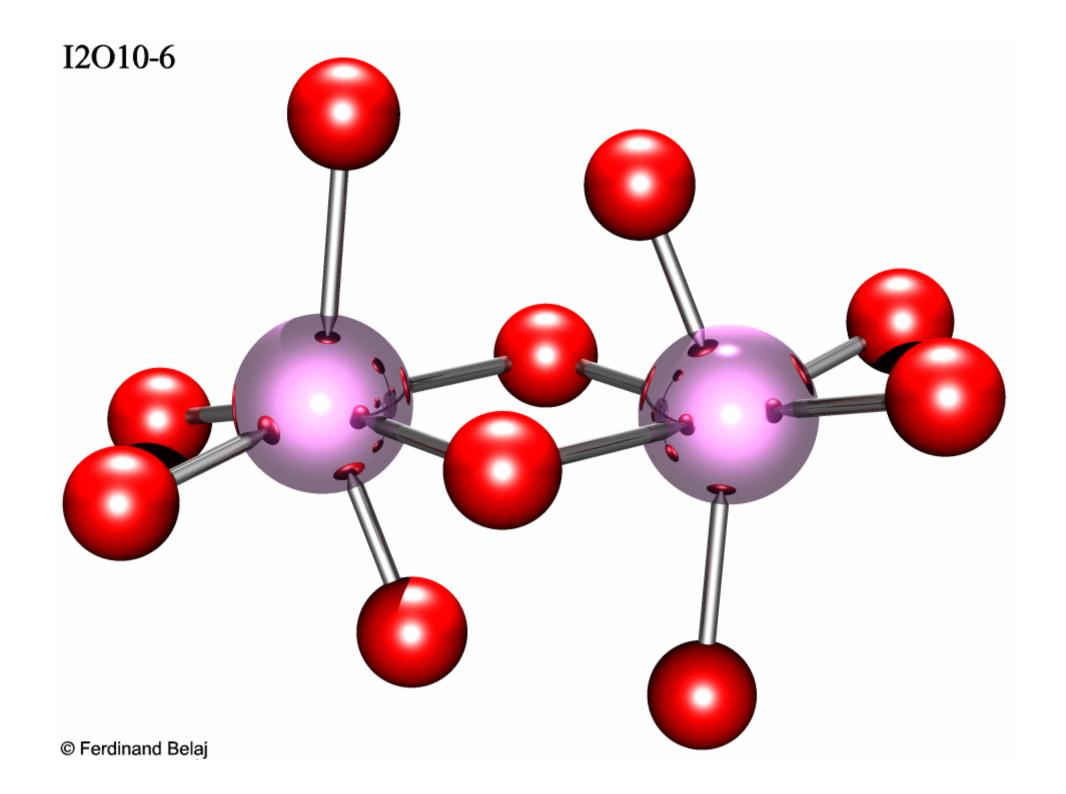
[meso-Periodsäure] [H₃IO₅] K₃IO₅ quadrat.-pyramidal!

(kein freies e-Paar)

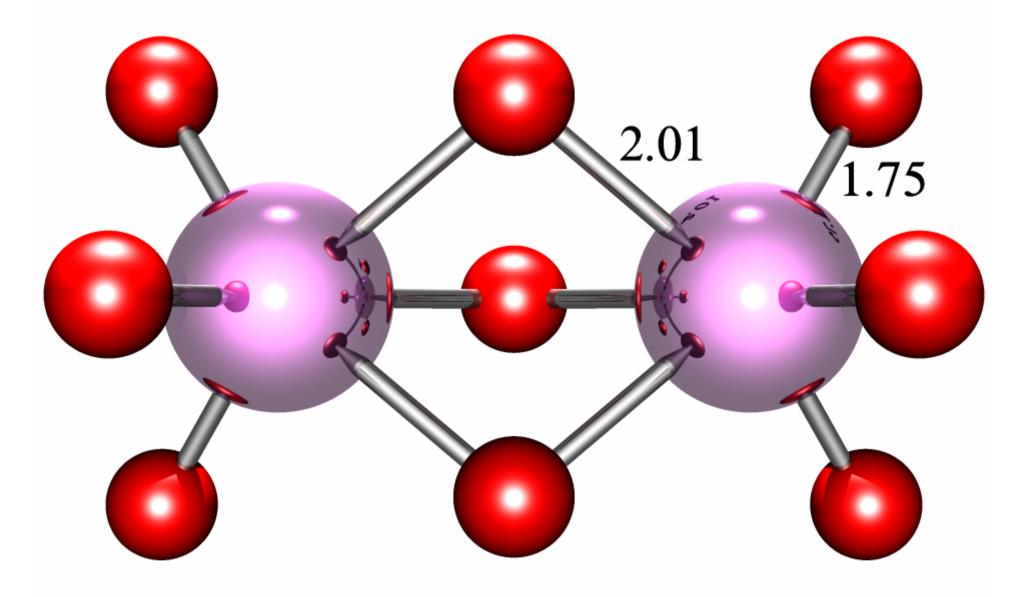
Orthoperiodsäure H₅IO₆ oktaedrisch

Diperiodate (z.B. $Ag_4H_2I_2O_{10}$, $K_4I_2O_9$; auch als *meso*-Periodate bez.): formal (Salze):


$$2H_5IO_6 \implies 2H_2O + H_2I_2O_{10}^{4-}$$
 bzw. $I_2O_{10}^{6-}$ (kantenverknüpfte Oktaeder)


$$2I_2O_{10}^{6-} \Rightarrow H_2O + I_2O_9^{4-}$$
 (flächenverknüpfte Oktaeder)

Triperiodsäure $H_7I_3O_{14}$; triperiodate $H_4I_3O_{14}^{3-}$ $H_2I_3O_{14}^{5-}$:


$$3H_5IO_6 \Rightarrow 4H_2O + H_7I_3O_{14}$$

(3 kantenverknüpfte Oktaeder)

I2O9-4

Periodsäuren und periodate

Darstellung: durch Oxidation von I⁻, I₂, IO₃⁻:

a) elektrochemisch (PbO₂-Anode):

$$IO_3^- + 4OH^- \Rightarrow H_2IO_6^{3-} + H_2O + 2e^-$$
 (Na₃H₂IO₆)

b) durch Oxidation mit Cl₂:

$$IO_3^- + 4OH^- + Cl_2 \Rightarrow H_2IO_6^{3-} + H_2O + 2Cl^-$$
 (Na₃H₂IO₆)

c) thermische Disproportionierung:

$$5Ba(IO_3)_2 \{\Delta\} \implies Ba_5(IO_6)_2 + 4I_2 + 9O_2$$

Reaktionen:

große Zahl von Umwandlungen bekannt (Greenwood 1131)