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Abstract—The masked phase retrieval problem is a challenging inverse
problem that occurs in many applications. It can be regarded as a
quadratic, or, more generally, bilinear inverse problem. Using a convexi-
fication based on tensorial lifting and first-order proximal algorithms, it
may be solved by singular-value thresholding. However, computations on
the tensor product are often impracticable. To overcome this limitation,
we propose tensor-free versions of singular-valued thresholding methods
that base on low-rank representations and an augmented Lanczos
process. We moreover demonstrate that a novel reweighting technique
can improve the methods’ convergence behavior and rank evolution.

I. INTRODUCTION

The classical phase retrieval problem consists in the recovery of a
possibly complex-valued signal u from the magnitudes |F [u]| of its
Fourier transform. Problems of this kind occur in crystallography [1],
[2], astronomy [3], [4], and laser optics [5], [6]. To be more precise,
we consider the two-dimensional masked Fourier phase retrieval
problem, where we aim at recovering an image u ∈ CN×N from
the masked Fourier intensities |FM [d` � u]| for ` = 0, . . . , L − 1.
Here, the unknown signal u is first pointwise multiplied with a mask
d` ∈ CN×N and afterwards M -point Fourier transformed by

(FM [v])[m2,m1] :=

N−1∑
n2,n1=0

v[n2, n1]e−2πi(n2m2+n1m1)/M .

Taking squares, the masked Fourier phase retrieval problem
|F [u]|2 = g† can be interpreted as a quadratic inverse problem which
is, requiring u = v, a special case of the bilinear inverse problem

K(u, v) = g†, (1)

where K is a bilinear operator from H1 × H2 into K, and where
H1, H2, and K denote finite-dimensional real Hilbert spaces.

II. FIRST-ORDER ALGORITHMS FOR CONVEX LIFTINGS

Inspired by the well-known PhaseLift algorithm [7], [8], we tackle
problem (1) by tensorial lifting [9]. Based on the universal property
of the tensor product, we can always find a unique linear K̆ : H1 ⊗
H2 → K with K̆(u⊗ v) = K(u, v) such that (1) is equivalent to

K̆(w) = g† with rank(w) = 1. (2)

To find the solution in the noise-free case, we minimize the nuclear
norm || · ||H1⊗πH2 over the solution set of the lifted problem, i.e.
we solve the following relaxed convex version of (2):

minimize ||w||H1⊗πH2 with K̆(w) = g†. (3)

Minimizers for (3) may be determined by first-order proximal algo-
rithms, for instance, the primal-dual method in [10]:

y(n+1) := y(n) + σ(K̆(w(n) + θ(w(n) − w(n−1)))− g†), (4)

w(n+1) := Sτα(w(n) − τK̆∗(y(n+1))), (5)

for suitable parameters σ, τ , α, and θ. This and other proximal
methods incorporate Sτα which is the singular-value (soft) thresh-
olding with respect to H1 and H2. Note that adaptations to quadratic
problems as well as to the case of noisy data are straightforward.
Also, other first-order algorithms such as ADMM [11] may be used.

III. TENSOR-FREE COMPUTATION AND REWEIGHTING

The main drawback of algorithm (4–5) are the computations in the
usually high-dimensional tensor product H1⊗H2. To overcome this
issue, we exploit that singular-value thresholding algorithms enforce
low-rank iterates. By storing the singular values/vectors instead of
the full tensor, we can efficiently compute (4) using the universal
property. For the update (5), we apply a restarted augmented Lanczos
process [12] to compute the singular value decomposition embracing
all singular values greater than τα. This process does not require the
application of K̆∗ but rather the action of the adjoints of the linear
mappings u 7→ K(u, v′), v 7→ K(u′, v) for fixed u′ ∈ H1, v′ ∈ H2.
In total, the algorithm can be performed in a tensor-free way.

For further rank reduction, we propose a novel reweighting heuris-
tic for H1 and, analogously, for H2 by replacing the inner product
by

〈u, v〉H̃1
:= 〈u, v〉H1 −

R−1∑
n=0

λn〈u, en〉H1〈en, v〉H1

with λn ∈ (0, 1) and orthonormal vectors en. Choosing en as the
leading singular vectors of w(n), we can promote these directions in
the subsequent singular value decompositions that occur in (5).

IV. APPLICATION TO MASKED PHASE RETRIEVAL

We now apply the developed algorithm to phase retrieval with ran-
domly generated Rademacher masks [13], [14]. A first reconstruction
of a synthetic image is shown in Fig. 1. In Fig. 2–3, we can observe
the positive effects of the Lanczos process and the reweighting. By
equipping H1 = H2 = CN2×N1 with a Sobolev norm, we can even
recover pixels that are not covered by the generated masks, see Fig. 4.

V. CONCLUSION

Exploiting the low-rank representations of w(n) together with the
augmented Lanczos process and reweighting technique, we obtain
an efficient lifting algorithm that avoids direct computations on
the tensor product. Moreover, by choosing the Hilbert spaces H1

and H2 suitably, we can directly incorporate a priori assumptions
like smoothness properties into the nuclear norm. The proposed
algorithm cannot only be used for phase retrieval but also for further
bilinear or quadratic recovery problems like deautoconvolution, blind
deconvolution, and parallel magnetic resonance imaging.
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Fig. 1. Masked phase retrieval based on the proposed primal-dual algorithm
with augmented Lanczos bidiagonalization and with Hilbert space reweight-
ing. The algorithm is terminated after 1 000 iterations, the reweighting is
repeated every 10 iterations.
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Fig. 2. Evolution of the rank during the proposed primal-dual algorithm.
The Hilbert space reweighting additionally reduces the rank of the iteration.
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Fig. 3. Evolution of the data fidelity term. The Hilbert space reweighting
increases the convergence rate. Due to numerical issues the convergence
stagnates at a data fidelity of ≈ 10−10.
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(a) Phase retrieval based on
L2-spaces.
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(b) Phase retrieval based on
Sobolev spaces.
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