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Abstract: Phase retrieval problems occur in a wide range of applications in physics and engin-
eering. Usually, these problems consist in the recovery of an unknown signal from the mag-
nitudes of its Fourier transform. In some applications, however, the given intensity arises from
a di�erent transformation such as the Fresnel or fractional Fourier transform. More generally,
we here consider the phase retrieval of an unknown signal from the magnitudes of an arbitrary
linear canonical transform. Using the close relation between the Fourier and the linear canonical
transform, we investigate the arising ambiguities of these phase retrieval problems and transfer
the well-known characterizations of the solution sets from the classical Fourier phase retrieval
problem to the new setting.
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1. Introduction

In many applications in physics and engineering such as crystallography [Mil90, Hau91],

astronomy [BS79, DF87], and laser optics [SST04, SSD+06], one is faced with the so-

called phase retrieval problem. The one-dimensional varient of this problem consists in

the recovery of an unknown signal f : R → C in L2 (R) with compact support from its

Fourier intensity

��F[f ](ω) �� ≔
����

∞
∫

−∞

f (t ) e−iωt dt
����.

Physically, one can interpret these magnitudes as intensity measurements of a wave

in the far �eld. If one measures the intensity in the near �eld, one has to replace the

Fourier transform by the Fresnel or the fractional Fourier transform [Goo96]. In order to

investigate the occurring ambiguities of the corresponding phase retrieval problems, we

exploit that all three transformations – Fourier, Fresnel, and fractional Fourier transform

– are special cases of the linear canonical transform [Wol79, Chap. 9].
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2. The linear canonical transform

For the real parameters a, b, c, and d with ad − bc = 1, the linear canonical transform is

de�ned by

C(a,b,c,d )[f ](ω) ≔

∞
∫

−∞

f (t ) K (a,b,c,d ) (ω, t ) dt (1)

with the kernel

K (a,b,c,d ) (ω, t ) ≔



1√
2πb

e−i
π
4 e

i
2 (

a
b
t 2− 2

b
ωt+d

b
ω2 ) b , 0,

1√
a
ei

c
2aω

2
δ
(

t − ω
a

)

else,
(2)

where δ denotes the Dirac delta-function, see [Wol79, Chap. 9].

Obviously, the linear canonical transform C (0,1,−1,0) is identical to the Fourier trans-

form F up to the multiplicative constant

θ ≔ θ (a,b,c,d ) ≔
1√
2πb

e−i
π
4 .

Moreover, the linear canonical transform covers a complete family of well-known in-

tegral transformations. For instance, C(1, 1/2α,0,1) and C (cosα,sinα,− sinα,cos α ) with α ∈ R
coincide with the Fresnel transform [Gor81] and with the fractional Fourier transform

[PD01], respectively.

If b , 0, the linear canonical transform can be written in the form

C(a,b,c,d )[f ](ω) = θ (a,b,c,d ) e
i d
2b
ω2

F

[
f (·) ei a2b ·2

] (
ω
b

)

. (3)

Using this relation to the Fourier transform, one can easily show that the inverse linear

canonical transform is given by

C
−1
(a,b,c,d )[ f̃ ](t ) =

∞
∫

−∞

f̃ (ω) K (a,b,c,d ) (ω, t ) dω,

which coincides up to a unimodular constant with C(d,−b,−c,a ) .

3. Phase retrieval from magnitudes of the linear canonical transform

We now consider the corresponding phase retrieval problem. In other words, we wish to

recover a signal f ∈ L2 (R) with compact support from |C(a,b,c,d )[f ] |. SinceC (a,0,c,d )[f ]

is merely a scaled and modulated version of f , and since the recovery of a complex-

valued function is not possible from its modulus in general, we assume that b , 0.

Similarly to the Fourier setting, this phase retrieval problem cannot be solved uniquely.
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Proposition 3.1. Let f ∈ L2 (R) be a signal with compact support. Then

(i) the rotated signal eiα f with α ∈ R
(ii) the shifted signal e−iat0 ·/b f (· − t0) with t0 ∈ R
(iii) the re�ected signal e−ia ·

2
/b f (−·)

have the same linear canonical intensity |C(a,b,c,d )[f ] |.

Proof. The assertion can be established by applying (3) and using the properties of the

Fourier transform.

(i) C (a,b,c,d )[e
iα f ](ω) = eiα C(a,b,c,d )[f ](ω)

(ii) C(a,b,c,d )[e
−iat0 ·/b f (· − t0)](ω) = θ e−iat

2
0/2b e

idω2
/2b

F

[
f (· − t0) eia (·−t0)

2
/2b

]
(ω/b )

= e−iat
2
0/2b e−iωt0/b C(a,b,c,d )[f ](ω)

(iii) C(a,b,c,d )[e
−ia ·2/b f (−·)](ω) = θ eidω2

/2b
F

[
f (−·) eia (−·)2/2b

]
(ω/b )

= e2i arg θ e
idω2

/b
C(a,b,c,d )[f ](ω)

Considering the absolute value of each equation �nishes the proof. �

Without further information about the unknown signal, these three ambiguities can-

not be avoided. Considering that these signals are, however, closely related to the ori-

ginal signal f , we call them trivial ambiguities. Besides these ambiguities, the phase

retrieval problem usually possesses a series of further non-trivial ambiguities. Using (3),

the complete solution set can be characterized similarly to the Fourier case in [Wal63,

Hof64, Bei16]. For this, we denote the Laplace transform and the autocorrelation func-

tion of a signal f ∈ L2 (R) by

L[f ](ζ ) ≔

∞
∫

−∞

f (t ) e−ζ t dt and A[f ](ζ ) ≔

∞
∫

−∞

∞
∫

−∞

f (s) f (s + t ) e−ζ t ds dt .

Theorem 3.2. Let f ∈ L2 (R) be a signal with compact support. Then each signal д ∈
L2 (R) with compact support and |C(a,b,c,d )[д] | = |C(a,b,c,d )[f ] | is of the form

L

[
θ e

ia
2b
·2д

]
(ζ ) = C ζm eζγ

∞
∏

j=1

(

1 − ζ
ηj

)

e
ζ
ηj ,

where the absolute value |C | and the imaginary part ℑγ of the complex constants C and γ

coincide for all signals д, and where ηj is chosen from the zero pair (ξ j , ξ j ) of A[θ e
ia ·2/2b f ].
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Proof. Since |C(a,b,c,d )[f ](ω) | = |θ F[f e
ia ·2/2b](ω/b ) |, we can identify the phase re-

trieval problem to recover f from |C(a,b,c,d )[f ] | with the phase retrieval problem to

recover θ f e
ia ·2/2b from |θ F[f e

ia ·2/2b] |. Hence, the solutions of both problems di�er

only by θ eia ·
2
/2b . Using [Bei16, Theorem 3.3] to characterize the solutions of the Fourier

phase retrieval problem, we immediately obtain the assertion. �

Remark 3.3. Since we have assumed that the unknown signal f has a compact support,

the autocorrelation function A[θ eia ·
2
/2b f ] in Theorem 3.2 is the analytic continuation of

|F[θ e
ia ·2/2b f ] |2 from the complex axis to the complex plane, i.e.

A
[
θ ei

a
2b
·2 f

]
(iω) =

���F
[
θ ei

a
2b
·2 f

]
(ω)

���
2

(ω ∈ R),

see for instance [Bei16, Proposition 3.2]. Hence, the required autocorrelation function

A[θ e
ia ·2/2b f ] is completely encoded in the given intensity |C(a,b,c,d )[f ] |. �

4. Discretization of the linear canonical phase retrieval problem

To determine a numerical solution, one has to discretize the problem formulation. For

this purpose, we replace the continuous-time signal f : R → C by a discrete-time signal

x : Z → C. Analogously to the continuous-time setting, we assume that the signal x ∈
ℓ2 (Z) has a �nite support, which means that only �nitely many signal components x[n]

are non-zero. Discretizing the integral in (1), we de�ne the linear canonical transform

of the signal x ≔ (x[n])n∈Z by

C(a,b,c,d )[x](ω) ≔
∑

n∈Z
x[n]K (a,b,c,d ) (ω,n),

where K (a,b,c,d ) is again the kernel in (2).

Analogous to (3), the linear canonical transform can be written as

C(a,b,c,d )[x](ω) = θ (a,b,c,d ) e
i d
2b
ω2

F

[
x[·] ei a2b ·2

] (
ω
b

)

(4)

whenever b , 0. Here F denotes the discrete-time variant of the Fourier transform

given by

F[x](ω) ≔
∑

n∈Z
x[n] e−iωn .

Reversing (4), we notice that the discrete-time linear canonical transform can be inverted

by

C
−1
(a,b,c,d )[x̃][n] =

π |b |
∫

−π |b |

x̃ (ω) K (ω,n) dω.
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Based on our de�nitions, the discrete-time variant of the phase retrieval problem can

be stated as follows: recover the unknown discrete-time signal x ∈ ℓ2(Z) with �nite

support from |C(a,b,c,d )[x] |. For the same reason as before, we assume that b , 0.

Adapting the proof of Proposition 3.1, we can simply transfer the three kinds of trivial

ambiguities to the discrete-time setting.

Proposition 4.1. Let x ∈ ℓ2 (Z) be a signal with �nite support. Then

(i) the rotated signal eiα x with α ∈ R
(ii) the shifted signal e−ian0 ·/b x[· − n0] with n0 ∈ Z
(iii) the re�ected signal e−ia ·

2
/b x[−·]

have the same linear canonical intensity |C(a,b,c,d )[x] |.

In order characterize the non-trivial ambiguities, we will exploit the representations

of the non-trivial solutions of the Fourier phase retrieval problem in [BS79, BP15]. De-

noting the support length of the discrete-time signal x ∈ ℓ2 (Z) by N , we de�ne the

corresponding autocorrelation signal and autocorrelation polynomial by

a[x][n] ≔
∑

k∈Z
x[k]x[k + n] and PA[x](z) ≔ zN−1

N−1
∑

n=−N+1
a[x][n]zn .

Since the autocorrelation signal a[x] possesses the support {−N + 1, . . . ,N − 1}, the
autocorrelation polynomial PA[x] is always a well-de�ned polynomial of degree 2N − 2.

Theorem 4.2. Let x ∈ ℓ2 (Z) be a signal with �nite support. Then each signal y ∈ ℓ2 (Z)
with �nite support and |C(a,b,c,d )[y] | = |C(a,b,c,d )[x] | is of the form

F

[
θ e

ia
2b
·2y

]
(ω) = ei(α+ωn0)

√
√

√

���a[θ e
i a
2b
·2x][N − 1] ���

N−1
∏

j=1

|βj |−1 ·
N−1
∏

j=1

(

e−iω − βj
)

where α ∈ R, n0 ∈ Z, and βj is chosen from the zero pair (γj ,γ
−1
j ) of PA[θ e

ia ·2/2bx] for

j = 1, . . . ,N − 1.

Proof. Similarly to the equivalent continuous-time statement, the relationship (4) im-

plies that |C(a,b,c,d )[x](ω) | = |θ F[x e
ia ·2/2b](ω/b ) |. We can thus reduce the considered

phase retrieval problem to the recovery of θ x eia ·
2
/2b from |θ F[x e

ia ·2/2b] |. Now, the as-
sertion immediately follows from the characterization of the solution set of the Fourier

phase retrieval problem in [BP15, Theorem 2.4]. �
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Remark 4.3. Considering the well-known relation

F

[
a
[
θ x ei

a
2b
·2] ]
=
���F

[
θ x ei

a
2b
·2] ���

2
=
���C (a,b,c,d )[x]

���
2

(5)

between the autocorrelation signal and the squared Fourier intensity of a discrete-time

signal with �nite support, see for instance [BP15, p. 1173], the autocorrelation polynomial

PA[θ e
ia ·2/2bx] in Theorem 4.2 is completely determined by |C(a,b,c,d )[x] |.

Moreover, equation (5) shows that |C(a,b,c,d )[x] |2 as Fourier transform of the auto-

correlation signal a[θ eia ·
2
/2bx] is a non-negative real-valued trigonometric polynomial

of degree N − 1. Hence, the intensity |C(a,b,c,d )[x] | is already uniquely de�ned by 2N − 1
samples at appropriate points in [−π, π). �

5. Conclusion

Using the close relation between the linear canonical transform and the Fourier trans-

form, we have characterized the complete solution set of the phase retrieval problem to

recover a continuous-time or discrete-time signal from the intensity of its linear canon-

ical transform. With the same approach, one can transfer most of the uniqueness results

for the classical phase retrieval problem, see for instance [BFGR76, KST95, RDN13, BP15,

Bei16, BP16] and references therein, to the new setting.

Acknowledgements

I gratefully acknowledge the funding of this work by the DFG in the framework of the

SFB 755 ‘Nanoscale photonic imaging’ and of the GRK 2088 ‘Discovering structure in

complex data: Statistics meets Optimization and Inverse Problems.’

References

[Bei16] Beinert, Robert: One-dimensional phase retrieval with additional interference measurements.

April 2016. – Preprint, arXiv:1604.04489v1

[BFGR76] Burge, R. E. ; Fiddy, M. A. ; Greenaway, A. H. ; Ross, G.: The phase problem. In: Proceedings

of the Royal Society of London. Series A. Mathematical Physical & Engineering Sciences 350 (1976),

pp. 191–212

[BP15] Beinert, Robert ; Plonka, Gerlind: Ambiguities in one-dimensional discrete phase retrieval

from Fourier magnitudes. In: Journal of Fourier Analysis and Applications 21 (2015), December,

No. 6, pp. 1169–1198

[BP16] Beinert, Robert ; Plonka, Gerlind: Enforcing uniqueness in one-dimensional phase retrieval by

additional signal information in time domain. March 2016. – Preprint, arXiv:1604.04493v1

[BS79] Bruck, Yu. M. ; Sodin, L. G.: On the ambiguity of the image reconstruction problem. In: Optics

communications 30 (1979), September, No. 3, pp. 304–308

[DF87] Dainty, J. C. ; Fienup, J. R.: Phase retrieval and image reconstruction for astronomy. In: Stark,

Henry (Ed.): Image Recovery : Theory and Application. Orlando (Florida) : Academic Press, 1987,

Chapter 7, pp. 231–275



Ambiguities in phase retrieval from magnitudes of a linear canonical transform 7

[Goo96] Goodman, Joseph W.: Introduction to Fourier Optics. 2nd Edition. New York : McGraw-Hill,

1996 (McGraw-Hill Series in Electrical and Computer Engineering : Electromagnetics)

[Gor81] Gori, F.: Fresnel transform and sampling theorem. In: Optics Communications 39 (1981), Novem-

ber, No. 5, pp. 293–297

[Hau91] Hauptman, Herbert A.: The phase problem of x-ray crystallography. In: Reports on Progress in

Physics 54 (1991), November, No. 11, pp. 1427–1454

[Hof64] Hofstetter, Edward M.: Construction of time-limited functions with speci�ed autocorrelation

functions. In: IEEE Transaction on Information Theory 10 (1964), April, No. 2, pp. 119–126

[KST95] Klibanov, Michael V. ; Sacks, Paul E. ; Tikhonravov, Alexander V.: The phase retrieval prob-

lem. In: Inverse Problems 11 (1995), No. 1, pp. 1–28

[Mil90] Millane, R. P.: Phase retrieval in crystallography and optics. In: Journal of the Optical Society

of America A 7 (1990), March, No. 3, pp. 394–411

[PD01] Pei, Soo-Chang ; Ding, Jian-Jiun: Relations between fractional operations and time-frequency

distributions, and their applications. In: IEEE Transactions on Signal Processing 49 (2001), August,

No. 8, pp. 1638–1655

[RDN13] Raz, Oren ; Dudovich, Nirit ; Nadler, Boaz: Vectorial phase retrieval of 1-D signals. In: IEEE

Transactions on Signal Processing 61 (2013), April, No. 7, pp. 1632–1643

[SSD+06] Seifert, Birger ; Stolz, Heinrich ; Donatelli, Marco ; Langemann, Dirk ; Tasche, Manfred:

Multilevel Gauss-Newton methods for phase retrieval problems. In: Journal of Physics. A. Math-

ematical and General 39 (2006), No. 16, pp. 4191–4206

[SST04] Seifert, Birger ; Stolz, Heinrich ; Tasche,Manfred: Nontrivial ambiguities for blind frequency-

resolved optical gating and the problem of uniqueness. In: Journal of the Optical Society of

America B 21 (2004), May, No. 5, pp. 1089–1097

[Wal63] Walther, Adriaan: The question of phase retrieval in optics. In: Optica Acta: International

Journal of Optics 10 (1963), No. 1, pp. 41–49

[Wol79] Wolf, Kurt B.: Integral Transforms in Science and Engineering. New York : Plenum Press, 1979


	Introduction
	The linear canonical transform
	Phase retrieval from magnitudes of the linear canonical transform
	Discretization of the linear canonical phase retrieval problem
	Conclusion

