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Abstract

The one-dimensional phase retrieval problem consists in the recovery of a complex-valued signal
from its Fourier intensity. Due to the well-known ambiguousness of this problem, the determ-
ination of the original signal within the extensive solution set is challenging and can only be
done under suitable a priori assumption or additional information about the unknown signal.
Depending on the application, one has sometimes access to further interference measurements
between the unknown signal and a reference signal. Beginning with the reconstruction in the
discrete-time setting, we show that each signal can be uniquely recovered from its Fourier intens-
ity and two further interference measurements between the unknown signal and a modulation
of the signal itself. Afterwards, we consider the continuous-time problem, where we obtain an
equivalent result. Moreover, the unique recovery of a continuous-time signal can also be ensured
by using interference measurements with a known or an unknown reference which is unrelated
to the unknown signal.
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1. Introduction

Phase retrieval problems occur in a width range of applications in physics and engin-

eering such as crystallography [Mil90, Hau91, KH91], astronomy [BS79, DF87], and laser

optics [SST04, SSD+06]. All of these applications have in common that one needs to re-

cover an unknown signal from the intensity of its Fourier transform. Because of the

well-known ambiguousness of this problem, the recovery of an analytic or a numer-

ical solution is generally challenging. To determine a meaningful solution within the

solution set, one therefore needs further a priori information or additional data.

In this paper, we consider the one-dimensional phase retrieval problem for discrete-

time and continuous-time signals. In both cases, we restrict ourselves to the recovery of

an unknown signal with �nite or compact support. The ambiguities of these problems

can be explicitly speci�ed by an appropriate factorization of the corresponding autocor-

relation signal, see [BS79, OS89, BP15] for the discrete-time and [Aku56, Aku57, Wal63,

Hof64] for the continuous-time setting.
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Depending on the application, one can sometimes superpose the unknown signal x

with an appropriate reference signal h. In the discrete-time setting, the additional Four-

ier intensity of the interference x + h can be used to reduce the solution set to merely

two di�erent signals or even to ensure uniqueness for particularly known references,

[KH90a, KH90b, BP15]. Under some further assumptions, it is also possible to use un-

known references to recover the wanted signal, [KH93, RDN13, RSA+11, BP15]. Besides

considering reference signals being not related to the unknown signal, one may also

employ a modulation of the unknown signal itself as reference in order to guarantee

uniqueness, [CESV13].

A slightly di�erent approach to ensure uniqueness by additional data in the frequency

domain is presented in [NQL83a, NQL83b]. Here the Fourier transform is replaced by the

so-called short-time Fourier transform, where the unknown signal is overlapped with a

small analysis window at di�erent positions.

If we normalize the support of the unknown signal x to {0, . . . ,M−1}, we can interpret

x as anM-dimensional vector. Further, the Fourier intensities | x̂ (ωk ) | at di�erent points

ωk ∈ [−π, π) can now be written as the intensity measurement | 〈x,vk 〉 | with vk ≔

(eiωkm )M−1m=0 . Generalizing this idea, here the question arises how the vectors vk have

to be chosen, and how many vectors vk are required to ensure the recovery of x from

the intensities | 〈x,vk 〉 |, see for instance [BCE06, BBCE09, BCM14, BH15] and references

therein. To reconstruct the signal x explicitly, one can again exploit suitable interference

measurements of the form | 〈x,vk + vℓ〉 |, see [ABFM14].

Besides employing interferencemeasurements, the ambiguities can also be avoided by

further information about the unknown signal in the time domain. In [BP16], it has been

shown that almost every complex-valued discrete-time signal x is uniquely determined

by its Fourier intensity | x̂ | and one absolute value |x[n] | for a �xedn within the support

of x . A similar statement holds if two phases argx[n] and argx[m] for appropriaten and

m are known beforehand.

The continuous-time phase retrieval problem, however, has a completely di�erent be-

havior than the discrete-time equivalent. Nonetheless, also here the ambiguousness is a

challenging problem. If the additional Fourier intensity of an appropriate modulation of

the unknown signal is available, one can here solve the corresponding phase retrieval

problem uniquely by comparing the zeros of the analytic continuation of the given in-

tensities, [WFB81]. Using a combination of oversampling and modulations, Pohl et al.

show that the unknown signal can be recovered up to a global phase, [PYB14]. Simil-

arly to the discrete-time setting, the unknown signal can also be uniquely recovered by

exploiting interference measurements. For this purpose, Burge et al. have constructed

suitable reference signals depending on the given Fourier intensity, [BFGR76].

The paper is organized as follows. In section 2, we introduce the discrete-time phase

retrieval problem. Here we investigate interference measurements of the unknown sig-

nal with a modulation of the signal itself. Using Prony’s method, we adapt and extend

the uniqueness results in [ABFM14] and [CESV13] to our speci�c problem formulation

and show that each discrete-time signal with �nite support can always be recovered
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uniquely. Moreover, we can drop the assumption that the support of the unknown sig-

nal must be known beforehand as supposed in [ABFM14] and [CESV13], since we can

recover the support from the given Fourier intensities.

In section 3, we transfer our �ndings from the discrete-time to the continuous-time

setting. Moreover, we consider interference measurements where the reference signal is

known beforehand. Similar to the discrete-time setting, these measurements reduce the

solution set to two di�erent signals. Giving a novel proof of the corresponding results

in [KST95], we can here explicitly represent the second possible solution. Moreover, we

show that the uniqueness results for an unknown reference signal [KH93, RDN13, BP15]

can also be transferred. For this purpose, we will employ the characterization of the

arising ambiguities in [Hof64].

2. Discrete-time phase retrieval

2.1. Trivial and non-trivial ambiguities

We begin with the one-dimensional discrete-time phase retrieval problem, where we wish

to recover a complex-valued signal x ≔ (x[n])n∈Z from its Fourier intensity | x̂ |, where

x̂ denotes the discrete-time Fourier transform given by

x̂ (ω) ≔ F[x](ω) ≔
∑

n∈Z

x[n] e−iωn (ω ∈ R).

In the following, we assume that the unknown signal x has a �nite support of length N .

In other words, we always �nd an n0 ∈ Z such that x[n] = 0 for n < n0 and n ≥ n0 +N .

As a consequence of this a priori condition, the corresponding autocorrelation signal

a[n] ≔
∑

k∈Z

x[k]x[k + n] (n ∈ Z)

possesses the �nite support {−N + 1, . . . ,N − 1}. Moreover, the autocorrelation function

â(ω) =
∑

n∈Z

a[n] e−iωn =
∑

n∈Z

∑

k∈Z

x[n]x[k] e−iω (n−k )
= | x̂ (ω) |2

is here always a non-negative trigonometric polynomial of degree N − 1, and the sup-

port length N of the unknown signal x is hence explicitly encoded in the given Fourier

intensity | x̂ |.

Under the assumption that the support lengthN is known beforehand, the considered

phase retrieval problem can be discretized in the frequency domain. Our problem is

equivalent to the task to recover the unknown signal x with support length N from the

2N − 1 values ���x̂ (

2πk
N

) ��� (k = −N , . . . ,N − 1)
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since the trigonometric polynomial â = | x̂ |2 of degree N − 1 is completely determined

by 2N − 1 samples at di�erent points in [−π, π).

It is well known that the (discrete-time) phase retrieval problem is not uniquely solv-

able in general. The simplest occurring ambiguities are caused by rotation (multiplica-

tion with a unimodular constant), time shift, and conjugation and re�ection, [BP15].

Proposition 2.1. Let x be a complex-valued signal with �nite support. Then

(i) the rotated signal (eiα x[n])n∈Z for α ∈ R

(ii) the time shifted signal (x[n − n0])n∈Z for n0 ∈ Z

(iii) the conjugated and re�ected signal (x[−n])n∈Z

have the same Fourier intensity | x̂ |.

Although the ambiguities in Proposition 2.1 always occur, they are of minor interest

since they are closely related to the original signal. Usually, besides the rotations, shifts,

and conjugation and re�ection, the discrete-time phase retrieval problem has an ex-

tensive set of further solutions, which can completely di�er from the original signal.

Similarly to [Wan13, BP15], we distinguish between trivial and non-trivial ambiguities.

Definition 2.2. A trivial ambiguity of the discrete-time phase retrieval problem is

caused by a rotation, time shift, conjugation and re�ection, or by a combinations of

these. All other occurring ambiguities are called non-trivial.

Unlike the trivial ambiguities, where we have in�nitely many possibilities to choose

the rotation parameter α ∈ R and the shift parameter n0 ∈ Z, the phase retrieval prob-

lem to recover a signal with �nite support can only possesses �nitely many non-trivial

solutions, see [BP15, Corollary 2.6]. More precisely, depending on the support length

N of the unknown signal, the solution set can consists of at most 2N−2 non-trivially

di�erent signals.

2.2. Interference measurements in the discrete-time se�ing

Considering the large number of non-trivial solutions, how can we determine the ori-

ginal signal within the set of ambiguities? One possibility to reduce the solution set

signi�cantly is the exploitation of additional interference measurements of the form

|F[x+h] |, whereh is a suitable reference signal with �nite support. Ifh is a known refer-

ence signal unrelated to x , then the corresponding phase retrieval problem has at most

two non-trivially di�erent solutions, see [KH90b, BP15]. If h is also an unknown sig-

nal, under some additional assumption, both signals x and h can be uniquely recovered
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from | x̂ |, | ĥ |, and | x̂ + ĥ |, see [KH93, RDN13, BP15], where in [RDN13] the additional

measurements | x̂ + iĥ | are employed.

In this section, we examine interference measurements of a slightly di�erent kind.

More precisely, we replace the reference signal h with a modulated version of the un-

known signal x itself. This idea goes back to [CESV13] and [ABFM14], where the phase

retrieval of a �nite-dimensional vector from the intensities of the discrete Fourier trans-

form or the intensities of a suitably constructed frame is considered.

Transferring this approach to the discrete-time phase retrieval problem, we try to

recover the complex-valued signal x with �nite support from its Fourier intensity | x̂ |

and a set of interference measurements of the form

���F [
x + eiα eiµ · x

] ���, (1)

where the modulations and rotations are described by µ ∈ R and α ∈ R. Since the

Fourier transform of the modulated signal is given by

F

[
eiα eiµ · x

]
(ω) = eiα

∑

n∈Z

x[n] e−i(ω−µ )n = eiα x̂ (ω − µ),

we can also interpret the considered interference measurements as interferences with

certain shifts of the Fourier transform x̂ in the frequency domain.

2.2.1. Phase reconstruction by using a polarization identity

Our �rst approach to recover x is to apply a suitable polarization identity, which allows

us to determine the unknown phase of x̂ . For this purpose, we generalize the Mercedes-

Benz polarization identity introduced by Alexeev et al. in [ABFM14]. In the following,

the primitive Kth root of unity is denoted by ζK ≔ e
2πi/K .

Lemma 2.3. Let z1 and z2 be two complex numbers. Then the polarization identity

z1z2 =
1

K

K−1
∑

k=0

ζ kK
���z1 + ζ −kK z2

���2 (2)

holds for every integer K > 2.

Proof. The assertion can be proven by generalizing the ideas in [ABFM14, p. 38]. We

expand the right-hand side of (2) and obtain

1

K

K−1
∑

k=0

ζ kK
���z1 + ζ −kK z2

���2 = 1

K

K−1
∑

k=0

ζ kK

(

|z1 |
2
+ 2ℜ

[
ζ −kK z1z2

]
+ |z2 |

2
)
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=

2

K

K−1
∑

k=0

ζ kK ℜ
[
ζ −kK z1z2

]

since the sum over all roots ζ kK is zero. Writing the real part of the product ζ −kK z1z2 as

ℜ
[
ζ −kK z1z2

]
= ℜ

[
ζ −kK

]
ℜ

[
z1z2

]
− ℑ

[
ζ −kK

]
ℑ
[
z1z2

]
,

and using the identitiesℜζ −1K = ℜζ
k
K and ℑζ −kK = −ℑζ

k
K , we further have

1

K

K−1
∑

k=0

ζ kK
���z1 + ζ −kK z2

���2 = 2

K

K−1
∑

k=0

ζ kK

(

ℜ
[
ζ kK

]
ℜ

[
z1z2

]
+ ℑ

[
ζ kK

]
ℑ
[
z1z2

] )
.

We consider the real and imaginary part of this equation separately. Here the substi-

tution ζ kK ≔ ℜζ
k
K + iℑζ

k
K yields

ℜ


1

K

K−1
∑

k=0

ζ kK
���z1 + ζ −kK z2

���2
 =

2

K
*,ℜ

[
z1z2

] K−1∑

k=0

[
ℜζ kK

]2
+ ℑ

[
z1z2

] K−1∑

k=0

ℜζ kK ℑζ
k
K
+-

and

ℑ


1

K

K−1
∑

k=0

ζ kK
���z1 + ζ −kK z2

���2
 =

2

K
*,ℜ

[
z1z2

] K−1∑

k=0

ℑζ kK ℜζ
k
K + ℑ

[
z1z2

] K−1∑

k=0

[
ℑζ kK

]2+-.
Rewriting the real and imaginary parts asℜζ k

K
= 1/2(ζ −k

K
+ ζ k

K
) and ℑζ k

K
= i/2(ζ −k

K
− ζ k

K
),

we can compute the occurring sums by

K−1
∑

k=0

[
ℜζ kK

]2
=

1

4

K−1
∑

k=0

(

ζ −2kK + 2 + ζ 2kK

)

=

K

2
,

K−1
∑

k=0

[
ℑζ kK

]2
= −

1

4

K−1
∑

k=0

(

ζ −2kK − 2 + ζ 2kK

)

=

K

2
,

and
K−1
∑

k=0

ℜζ kKℑζ
k
K =

i

4

K−1
∑

k=0

(

ζ −2kK − ζ 2kK

)

= 0,

which completes the proof. �

Remark 2.4. Obviously, Lemma 2.3 cannot be valid ifK < 3 because the right-hand side

would be always a real number. For the special case K = 3, Lemma 2.3 coincides with

the original Mercedes-Benz polarization identity introduced in [ABFM14, Lemma 2.1]. �
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The polarization identity in Lemma 2.3 can now be used to reveal the relation between

the values x̂ (ω) and x̂ (ω − µ) hidden in the interference measurements

���F [
x + ζ −kK eiµ · x

] ��� (k = 0, . . . ,K − 1)

for some K ≥ 3 and µ ∈ R. The following theorem shows that the knowledge of this

relationship is su�cient to recover each discrete-time signal up to trivial rotations.

Theorem 2.5. Let x be a discrete-time signal with �nite support of length N . If µ , 2π p/q

for all p ∈ Z and q ∈ {1, . . . ,N − 1}, then the signal x can be uniquely recovered up to
rotation from its Fourier intensity | x̂ | and the interference measurements

���F [
x + ζ −kK eiµ · x

] ��� (k = 0, . . . ,K − 1)

for every K ≥ 3.

Proof. Firstly, we apply the polarization identity in Lemma 2.3 to the given interference

measurements | x̂ (·) + ζ −kK x̂ (· − µ) | and obtain

1

K

K−1
∑

k=0

ζ kK
���x̂ (ω) + ζ −kK x̂ (ω − µ)

���2 = ��x̂ (ω) �� ��x̂ (ω − µ) �� ei(ϕ (ω−µ )−ϕ (ω )),

where ϕ denotes the phase of x̂ = | x̂ | eiϕ . If x̂ (ω) and x̂ (ω − µ) are non-zero, we can

hence determine the phase di�erence ϕ (ω − µ) − ϕ (ω).

Since the unknown signal can only be recovered up to rotations, we can arbitrarily

choose the phase ϕ (ω0) of x̂ (ω0) for oneω0 without loss of generality. Starting from this

point, we can now use the phase di�erences to compute a series of relative phases

ϕ (ω0 + µk ) (k = 0, . . . , 2N − 1)

with respect to ϕ (ω0). To ensure that ϕ (ω0 + µk ) , 0 for k = 0, . . . , 2N − 1, we notice

that x̂ can be written as

x̂ (ω) = e−iωn0
N−1
∑

n=0

cn e
−iωn, (3)

with cn ≔ x[n + n0] because of the �nite support. Since the occurring algebraic poly-

nomial in e−iω of degree N − 1 can only have �nitely many zeros on the unit circle, we

can always �nd a suitable ω0 that enables us to recover 2N relative phases and hence

2N values of x̂ itself. Writing the recovered points of x̂ in (3) as

x̂ (ω0 + µk ) =

N−1
∑

n=0

[
cn e

−iω0 (n+n0 )
]
e−ikµ (n+n0 ) (k = 0, . . . , 2N − 1), (4)
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we can interpret the determined points as function values of the exponential sum with

complex coe�cients cn e
−iω0 (n+n0 ) and real frequencies µ (n + n0) at the equally spaced

points k from 0 to 2N − 1.

By assumption, we can suppose that µ , 2π ℓ/(n1−n2 ) for all ℓ ∈ Z and n1 , n2 with n1,

n2 ∈ {0, . . . ,N − 1}. Therefore,

µ (n1 + n0) , µ (n2 + n0) + 2πℓ

and thus the values e−iµ (n+n0 ) in (4) di�er pairwise for n = 0, . . . ,N − 1. Consequently,

the exponential sum in (4) is completely determined by the given function values, and

we can apply Prony’s method to determine the unknown coe�cients and frequencies,

see [Pro95] or [Hil87, Sect. 9.4]. For that reason, we can always determine x̂ and hence

x up to rotation. �

Remark 2.6. The main reason for the application of Prony’s method in the proof of

Theorem 2.5 is the lack of information about the integer n0 in the frequency represent-

ation (3). Considering the in�uence of the modulation e−iωn0 in the time domain, we

only know the support length N of the unknown signal x but not the exact position

of the support itself. If we additionally assume that x has the support {0, . . . ,N − 1},

we can recover the trigonometric polynomial x̂ directly from the constructed function

values by solving a linear equation system because all occurring frequencies are known

beforehand. Unfortunately, we cannot neglect the restrictions on the parameter µ since

these are needed to ensure the invertibility of the arising Vandermonde matrix. �

Remark 2.7. Considering the assumptions of Theorem 2.5, we have to choose µ in a

way that µ is not a rational multiple of 2π where the denominator is an integer between

1 and N − 1. Choosing µ as an irrational multiple of 2π, we can recover every signal from

the given interference measurements independently of the actual support length N . �

Remark 2.8. If we assume that the support of the unknown discrete-time signal x with

support length N is contained in the set {0, . . . ,M − 1} withM ≥ N such that (x[n])n∈Z
can be identi�ed with an M-dimensional vector, then we can interpret the Fourier in-

tensity | x̂ (ωn ) | for a certain pointωn in the frequency domain as intensity measurement

| 〈x,vn〉 | with the frame vector vn ≔ (eiωnk )M−1
k=0

. Choosing at least M pairwise di�er-

ent points ωn in [−π, π) beforehand, we can consequently transfer the whole theory

developed by Alexeev et al. [ABFM14] to recover the unknown vector x from the given

intensity measurements | x̂ (ωn ) | and the given interference measurements

���x̂ (ωn ) + ζ −k3 x̂ (ωm )
��� (k = 0, 1, 2)

for a larger number of randomly chosen index pairs (n,m). In [ABFM14] it has been

shown that the unknown vector can be recovered with high probability from approxim-

ately 240M measurements for an arbitrary frame, see [ABFM14, p. 41].
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In contrast to the �ndings of Alexeev et al. for arbitrary frames, we exploit that the

Fourier transform of a complex-valued discrete-time signal with �nite support of length

N is a trigonometric polynomial. For the special case K = 3 considered by Alexeev

et al., this enables us to recover the unknown signal x always from merely 8N −4meas-

urements or, more precisely, from 2N − 1 measurements for each of the four Fourier

intensities ��x̂ (·) �� and
���x̂ (·) + ζ −k3 x̂ (· − µ)

��� (k = 0, 1, 2),

cf. subsection 2.1. Moreover, the procedure in the proof of Theorem 2.5 allows us to

determine the position of the current support from the given Fourier intensities. In other

words, we can recover the unknown signal x without the assumption that the support

of x is contained in some speci�c set {0, . . . ,M − 1}. �

2.2.2. Reducing the number of required interference measurements

Looking back at Theorem 2.5, we observe that the actual number of interference meas-

urements depends on the chosen root of unity ζK or, more precisely, on the chosen

integer K . Consequently, it seems that the given interference measurements are highly

redundant. This impression is con�rmed by a result in [CESV13], where Candès et al.

employ only two of the interference measurements like in Theorem 2.5 to recover a

�nite-dimensional vector.

In this section, we adapt the approach of Candès et al. to the discrete-time phase

retrieval problem and simultaneously generalize the result to show that each complex-

valued discrete-time signal can be recovered from its Fourier intensity and two further

interferencemeasurements of the form (1), where the two rotations can be chosen almost

arbitrarily. In particular, these rotations do not have to arise from the Kth roots of unity

for a certain integer K .

Theorem 2.9. Let x be a discrete-time signal with �nite support of length N . If µ , 2π p/q

for all p ∈ Z and q ∈ {1, . . . ,N − 1}, then the signal x can be uniquely recovered up to a
rotation from its Fourier intensity | x̂ | and the two interference measurements

���F [
x + eiα1 eiµ · x

] ��� and ���F [
x + eiα2 eiµ · x

] ���,
where α1 and α2 are two real numbers satisfying α1 − α2 , πk for all integer k .

Proof. We follow the lines of the proof of Theorem 2.5. Again, the crucial point is the

extraction of the required relative phases from the given interference measurements.

Writing x̂ (ω) = | x̂ (ω) | eiϕ (ω ), we can rearrange the �rst interference measurement to

���x̂ (ω) + eiα1 x̂ (ω − µ) ���2
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=
��x̂ (ω) ��2 + ��x̂ (ω − µ) ��2 + 2 ��x̂ (ω) �� ��x̂ (ω − µ) ��ℜ[

ei(ϕ (ω−µ )−ϕ (ω )+α1)
]
.

Replacing α1 by α2, we obtain a similar representation for the second interference meas-

urement. Consequently, if both moduli | x̂ (ω) | and | x̂ (ω − µ) | of the Fourier transform

x̂ are non-zero, we can determine

ℜ
[
ei(ϕ (ω−µ )−ϕ (ω )+α1)

]
and ℜ

[
ei(ϕ (ω−µ )−ϕ (ω )+α2)

]
.

In order to extract the phase di�erence ϕ (ω − µ) − ϕ (ω) from these two values, we

apply Euler’s formula and afterwards the addition theorem for cosine. In this manner,

we obtain

ℜ
[
ei(ϕ (ω−µ )−ϕ (ω )+α1)

]
= cos(α1) cos(ϕ (ω − µ) − ϕ (ω))

− sin(α1) sin(ϕ (ω − µ) − ϕ (ω))

and

ℜ
[
ei(ϕ (ω−µ )−ϕ (ω )+α2)

]
= cos(α2) cos(ϕ (ω − µ) − ϕ (ω))

− sin(α2) sin(ϕ (ω − µ) − ϕ (ω)).

Since the values on the left-hand side are known, we can consequently determine the

sine and cosine of the wanted phase di�erence ϕ (ω−µ)−ϕ (ω) by solving a simple linear

equation system. Here, the determinant of the occurring matrix is given by

det
(

cos α1 − sinα1
cos α2 − sinα2

)

= sinα1 cosα2 − cosα1 sinα2 = sin(α1 − α2),

which ensures a unique solution whenever α1 − α2 does not coincide with a multiple of

π. Consequently, we can always determine the required phase di�erenceϕ (ω−µ)−ϕ (ω)

for a certainω. With the extracted phase di�erence, the theorem can now be justi�ed as

discussed in the proof of Theorem 2.5. �

Remark 2.10. As mentioned before, Candès et al. consider a slightly di�erent phase re-

trieval problem in [CESV13, Theorem 3.1]. More precisely, they deal with the problem to

recover a �nite-dimensional vector from the intensities of its discrete Fourier transform.

Using our notation, we can state this problem as follows: recover the signal x whose

support of length N is contained in the interval from 0 toM − 1 from the (discrete-time)

Fourier intensities

���x̂ (

2πk
M

) ���, ���x̂ (

2πk
M

)

+ x̂
(

2π(k−ℓ)
M

) ���, and
���x̂ (

2πk
M

)

− i x̂
(

2π(k−ℓ)
M

) ���
for all integers k = 0, . . . ,M − 1 and for a certain integer ℓ. Under the additional as-

sumption that ℓ and M are co-prime, and that the given Fourier samples | x̂ (2πk/M ) | are

non-zero, Candès et al. show that the unknown signal x can be uniquely recovered.

Recalling that the Fourier intensity of a discrete-time signal with support length N is
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entirely determined by 2N − 1 arbitrary samples, we can directly compare Theorem 2.9

for α1 ≔ 0, α2 ≔ −π/2, and µ ≔ 2π ℓ/M with the results of Candès et al. and see that

both statements are almost identical. In the special case that N and M coincide, the

main di�erence between both statements is that we need twice as many measurements.

Anyway, this enables us to neglect the assumption that the given samples of the Fourier

intensity have to be non-zero. Further, we can determine the unknown position of the

current support completely from the given Fourier intensities.

Finally, the integers N and M have a slightly di�erent meaning. With the dimension

M , we determine the interval {0, . . . ,M−1} that contains the non-zero components of the

considered signal x . The current support length N of this signal can however be much

smaller than the assumed dimensionM . Consequently, ifM is only a rough estimation,

then Theorem 2.9 allows us to recover the wanted signal from a much smaller set of

measurements. �

3. Continuous-time phase retrieval

3.1. Characterization of the occurring ambiguities

Di�erent from the previous section, we now consider the continuous-time phase re-

trieval problem, which has a completely di�erent behavior as the discrete-time equi-

valent. Here we are faced with the recovery of a continuous-time signal or a function

f : R → C in L2 with compact support from its Fourier intensity |F[f ] |, where the

corresponding Fourier transform is given by

f̂ (ω) ≔ F[f ](ω) ≔

∞
∫

−∞

f (t ) e−iωt dt .

The ambiguousness of this problem has been studied by Akutowicz [Aku56, Aku57],

Walther [Wal63], and Hofstetter [Hof64], for instance. To reduce the set of possible am-

biguities, we will again employ interference measurements with di�erent kinds of refer-

ence signals. For this purpose, we require a suitable characterization of the solution set.

Here we follow the approach by Hofstetter [Hof64], where the solutions are presented

as an in�nite product with respect to the zero set of the analytic continuations of their

Fourier transforms.

In our case, the continuation of F[f ] is given through the theorem of Paley-Wiener,

see for instance [Boa54, Theorem 6.8.1]. Using the (two-sided) Laplace transform, we

can write this well-known theorem in the following form.
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Theorem 3.1 (Paley-Wiener). The function F : C→ C is an entire function of exponen-
tial type and belongs to L2 on the imaginary axis if and only if F is the Laplace transform

F (ζ ) ≔ L[f ](ζ ) ≔

∞
∫

−∞

f (t ) e−ζ t dt ,

of a function f in L2 with compact support.

In this context, a function F : C → C is called entire if the function is analytic over the
whole complex plane. If F moreover grows no faster than an exponential, which means

that F can be bounded by ��F (ζ ) �� ≤ A eB | ζ |,

then the entire function F is of exponential type, see for instance [You80, p. 53]. As a

consequence of the theorem of Paley-Wiener, the Laplace transform F is now the unique

analytic continuation of the Fourier transformF[f ] from the imaginary axis to the com-

plex plane because the restriction F (i·) of the holomorphic Laplace transform F to the

imaginary axis obviously coincides with F[f ].

The next key instruments in the characterization of the occurring ambiguities are the

autocorrelation signal

a(t ) ≔

∞
∫

−∞

f (s) f (s + t ) ds

and the autocorrelation function A ≔ L[a]. Since the autocorrelation signal of a com-

pactly supported function f in L2 is again a compactly supported function in L2, the

autocorrelation functionA can be interpreted as the analytic continuation of the Fourier

transform â. Further, the autocorrelation is closely related to the given Fourier intensity,

see [Hof64].

Proposition 3.2. Let f be a continuous-time signal in L2 with compact support. Then
the autocorrelation function A is the analytic continuation of the squared Fourier intensity
|F[f ] |2 from the imaginary axis to the complex plane.

Proof. Using the de�nition of the autocorrelation signal, we can write the autocorrel-

ation function A of the considered signal f as

A(ζ ) =

∞
∫

−∞

∞
∫

−∞

f (s) f (s + t ) e−ζ t ds dt

=

∞
∫

−∞

∞
∫

−∞

f (s) f (t ) e−ζ t eζ s dt ds = F
(

ζ
)

F
(

−ζ
)

.

(5)



One-dimensional phase retrieval with additional interference measurements 13

If we now consider the restriction of this identity to the imaginary axis, we have

A(iω) = F (iω) F (iω) = f̂ (ω) f̂ (ω) =
��� f̂ (ω) ���2,

which implies that the restriction of the autocorrelation function A coincides with the

squared Fourier intensity |F[f ] |2 as claimed. Since A is a holomorphic function by the

theorem of Paley-Wiener, the assertion follows. �

After this preliminaries, we recall the characterization of all occurring ambiguities in

the continuous-time phase retrieval problem, [Hof64, Theorem I].

Theorem 3.3 (Hofste�er). Let f be a continuous-time signal in L2 with compact support.
Then the Laplace transform of each continuous-time signal д in L2 with compact support
and the same Fourier intensity |F[д] | = |F[f ] | can be written in the form

G (ζ ) = C ζmeζγ
∞
∏

j=1

(

1 −
ζ

ηj

)

e
ζ
ηj

where the absolute value |C | and the imaginary part ℑγ of the complex constants C and
γ coincide for all signals д, and where ηj is chosen from the zero pair (ξ j ,−ξ j ) of the auto-
correlation function A.

Proof. For the sake of convenience for the reader, we give a short proof following the

lines of [Hof64]. Let f and д be signals with compact support in L2, and let F and G

be their Laplace transforms being entire functions of exponential type. By Hadamard’s

factorization theorem [Boa54], we can represent the entire functions F andG by

F (ζ ) = C1 ζ
m1 eζγ1

∞
∏

j=1

(

1 −
ζ

ξ j

)

e
ζ
ξj and G (ζ ) = C2 ζ

m2 eζγ2
∞
∏

j=1

(

1 −
ζ

ηj

)

e
ζ
ηj

with respect to their non-vanishing zeros ξ j and ηj .

Assuming that |F[д] | = |F[f ] |, we can conclude that the autocorrelation functions

of f and д coincide. Using (5), we can therefore represent the common autocorrelation

function A in terms of F orG by

A(ζ ) = F
(

ζ
)

F
(

−ζ
)

= G
(

ζ
)

G
(

−ζ
)

. (6)

Due to this factorization, all zeros of the autocorrelation function A obviously occur in

pairs of the form (ξ j ,−ξ j ), where ξ j is a zero of F . Since an analogous observation follows

from the factorizationofG, we can resort the zerosηj so thatηj = ξ j orηj = −ξ j . Further,



14 Robert Beinert

the multiplicitiesm1 andm2 of the zero at the origin must also be equal. Consequently,

the possibly in�nite products in the factorizations of A coincide, and we can reduce (6)

to

|C1 |
2 eζ (γ1−γ 1) = |C2 |

2 eζ (γ2−γ 2) or |C1 |
2 e2ζℑ[γ1] = |C2 |

2 e2ζℑ[γ2],

which shows that the absolute values |C1 | and |C2 | and also the imaginary partsℑγ1 and

ℑγ2 coincide. �

Similarly to the discrete-time setting, we divide the occurring ambiguities charac-

terized by Theorem 3.3 in two di�erent classes. Since the rotation, the time shift by a

real number, and the re�ection and conjugation of a solution always result in a further

solution of the considered phase retrieval problem, cf. Proposition 2.1, we call these am-

biguities trivial. The remaining ambiguities are non-trivial. Using the characterization

in Theorem 3.3, we can also represent the ambiguities in the following manner.

Proposition 3.4. Let f and д be two continuous-time signals in L2 with compact support
and the same Fourier intensity |F[f ] | = |F[д] |. Then there exist two entire functions F1
and F2 of exponential type such that

F (ζ ) = F1(ζ ) F2 (ζ )

and

G (ζ ) = eiα e−ζ t0 F1
(

−ζ
)

F2
(

ζ
)

,

where α and t0 are suitable real numbers.

Proof. Applying Theorem 3.3, we can represent the Laplace transforms F andG by

F (ζ ) = C1 ζ
m eζγ1

∞
∏

j=1

(

1 −
ζ

ξ j

)

e
ζ
ξj and G (ζ ) = C2 ζ

m eζγ2
∞
∏

j=1

(

1 −
ζ

ηj

)

e
ζ
ηj

with |C1 | = |C2 |, ℑγ1 = ℑγ2, and ηj ∈ (ξ j ,−ξ j ). Now, we can resort the zeros ofG such

that

ηj =

−ξ j ξ j ∈ Λ,

ξ j else

for an appropriate subset Λ of the zero set Ξ ≔ {ξ j : j ∈ N} of F .

Based on this subset, we de�ne the two possibly in�nite products F1 and F2 by

F1(ζ ) ≔
∏

ξ j ∈Λ

(

1 −
ζ

ξ j

)

e
ζ
ξj and F2 (ζ ) ≔ C1 ζ

m eζγ1
∏

ξ j ∈Ξ\Λ

(

1 −
ζ

ξ j

)

e
ζ
ξj .
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Due to the fact that the convergence exponent – the in�mum of the positive numbers

α for which the series
∑∞
j=1 | ξ j |

−α converges – of the zeros of an entire function is al-

ways less than or equal to the order of the entire function, see for instance [Boa54,

Theorem 2.5.18], the zeros ξ j can at most have the convergence exponent one. Since the

zeros of F1 and F2 are merely subsets of the zeros of F , the corresponding convergence

exponents thus also have to be less than or equal to one. Borel’s theorem now implies

that the possibly in�nite products F1 and F2 are again entire functions of exponential

type, see [Mar77].

Obviously, we have the factorization F = F1 F2. In order to achieve the factorization

ofG, we consider the re�ection of the �rst factor given by

F1
(

−ζ
)

=

∏

ξ j ∈Λ

(

1 −
ζ

−ξ j

)

e
ζ

−ξ j .

Hence, the re�ection F1(−·̄) possesses the zeros ηj = −ξ j for all ξ j in Λ, which implies

that the zeros of the product F1(−·̄) F2 andG coincide.

Finally, since the absolute values |C1 | and |C2 | and the imaginary parts ℑγ1 and ℑγ2
have to be equal by Theorem 3.3, the entire functions F1(−·̄) F2 andG can only di�er by

a rotation eiα and a time shift e−ζ t0 . Choosing the real numbers α and t0 suitably, we

obtain the wanted factorization in the assertion. �

Remark 3.5. We can interpret Proposition 3.4 in a slightly di�erent way: if the restric-

tions of the entire functions F andG of exponential type to the imaginary axis coincide,

then we can always �nd two entire functions F1 and F2 to factorize F andG in the man-

ner of Proposition 3.4. This observation can now be generalized to entire function of

arbitrary order, see [Mar14, Lemma 1]. �

Remark 3.6. For the discrete-time setting, an equivalent statement of Proposition 3.4

holds where the Laplace transforms F and G are replaced by the discrete-time Fourier

transforms of the two signals. Moreover, for two discrete-time signals x and y with

| x̂ | = |ŷ |, there always exists two discrete-time signals x1 and x2 with �nite support

such that

x = x1 ∗ x2 ≔

(

∑

k∈Z

x1[n − k]x2[k]
)

n∈Z
and y = eiα x1[· − n0] ∗ x2[−·]

with suitableα ∈ R andn0 ∈ Z, see [BP15, Theorem 2.3]. In otherwords, each ambiguity

of the discrete-time phase retrieval problem can be represented by an appropriate con-

volution and a suitable rotation, shift, and re�ection and conjugation of the occurring

factors. �
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3.2. Ensuring uniqueness in the continuous-time phase retrieval

Di�erently from the discrete-time phase retrieval problem, the continuous-time version

to recover a certain signal usually possesses in�nitely many non-trivial ambiguities.

Hence, we are once more faced with the question: how can we ensure the unique recov-

ery of the unknown signal, or how can we at least reduce the occurring ambiguities to

a su�ciently small set.

Like in the discrete-time setting, we will employ di�erent kinds of interference meas-

urements. Here Klibanov et al. show that the additional interference measurement with

a known reference can almost ensure the unique recovery of a distribution with com-

pact support. Adapting this observation [KST95, Proposition 6.5] to the continuous-time

phase retrieval problem, we obtain the following statement.

Proposition 3.7 (Klibanov et al.). Let f andh be two continuous-time signals in L2 with
compact support, where the non-vanishing reference signal h is known beforehand. Then
the signal f can be recovered from the Fourier intensities

��F[f ] �� and ��F[f + h] ��
except for at most one ambiguity.

Proof. We give a new proof of the statement by adapting the proof of the discrete-time

equivalent in [BP15, Theorem 4.3]. Writing the Fourier transforms of the signals f and

h in their polar representations

F[f ](ω) = ��F[f ](ω) �� eiϕ (ω ) and F[h](ω) = |F[h](ω) | eiψ (ω ),

where ϕ and ψ denote the corresponding phase functions, we can represent the given

interference measurement by

|F[f + h](ω) |2 = |F[f ](ω) |2 + |F[h](ω) |2 + 2|F[f ](ω) | |F[h](ω) | cos(ϕ (ω) −ψ (ω)).

In other words, the phase di�erence ϕ −ψ is given by

ϕ (ω) −ψ (ω) = ± arccos

(

|F[f + h](ω) |2 − |F[f ](ω) |2 − |F[h](ω) |2

2|F[f ](ω) | |F[h](ω) |

)

+ 2πk (7)

with an appropriate integer k whenever F[f ](ω) and F[h](ω) are non-zero.

SinceF[f ] andF[h] are continuous, we can �nd a small interval forω where the sign

in (7) does not change and the integerk is �xed. Further, since ϕ−ψ is the phase function

of the productF[f ]F[h], which is the restriction of the entire function F (·)H (−·̄) to the

imaginary axis, we can extendϕ−ψ uniquely from the interval to the complete frequency
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domain. Consequently, there exist at most two distinct phase di�erences ϕ − ψ . Here

the phase ϕ̆ of the second solution f̆ and the phase ϕ are related by

ϕ (ω) −ψ (ω) = −ϕ̆ (ω) +ψ (ω) + 2πk .

Hence, the Fourier transform of the second solution has to be of the form

F[ f̆ ] = ��F[f ] �� e−iϕ+2iψ , (8)

which completes the proof. �

Remark 3.8. The main bene�t of the proof of Proposition 3.7 given above is that we

obtain an explicit representation of the second possible solution in dependence of the

phase of the reference signal. Considering the Fourier transform (8), we can have doubts

whether the corresponding continuous-time signal f̆ is really a signal with compact

support and hence a valid solution of the problem. Indeed, the Fourier transform (8)

does not have to be the restriction of an entire function and does not even have to be

a continuous function at all because the phase ψ of the continuous function F[h] itself

can possesses discontinuities. Further, the theorem of Paley-Wiener here implies that

the second solution f̆ does not have to have a compact support and may thus be an

invalid solution of the considered continuous-time phase retrieval problem. �

Next, we replace the known reference signal h within the interference f + h by an

unknown reference. Inspired by the discrete-time equivalent in [BP15, Theorem 4.4],

we show that the continuous-time signal f and the unknown reference h are uniquely

determined by the Fourier intensities of f , h, and f +h up to common trivial ambiguities.

This means that we can recover f and h up to common rotations or time shifts or up to

the re�ection and conjugation of the two signals.

Theorem 3.9. Let f and h be two continuous-time signals in L2 with compact support. If
the non-vanishing zeros of the Laplace transformed signal F and H form disjoint sets, then
both signals f and h can be recovered from the Fourier intensities

|F[f ] |, |F[h] |, and, |F[f + h] |

uniquely up to common trivial ambiguities.

Proof. Let f̆ and h̆ be a further solution pair of the considered problem with

|F[f ] | = |F[ f̆ ] |, |F[h] | = |F[h̆] |, and |F[f + h] | = |F[ f̆ + h̆] |.
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Applying Proposition 3.4, we can represent the two solution pairs in the frequency do-

main by an appropriate factorization of the Laplace transform F and H of the original

signals. In this manner, we obtain the factorizations

F (ζ ) = F1(ζ ) F2(ζ ) and F̆ (ζ ) = eiα1 e−ζ t1 F1
(

−ζ
)

F2
(

ζ
)

and further

H (ζ ) = H1 (ζ )H2 (ζ ) and H̆ (ζ ) = eiα2 e−ζ t2 H1

(

−ζ
)

H2

(

ζ
)

for some real numbers α1, α2, t1, t2 and entire functions F1, F2, H1, H2.

In the next step, we consider the analytic continuation of the squared interference

measurement or the corresponding autocorrelation function, see Proposition 3.2. With

the representation in (5), we can write the given interference measurement as

(

F
(

ζ
)

+H
(

ζ
))

(

F
(

−ζ
)

+H
(

−ζ
)

)

=

(

F̆
(

ζ
)

+ H̆
(

ζ
))

(

F̆
(

−ζ
)

+ H̆
(

−ζ
)

)

or in the simpli�ed form

F
(

ζ
)

H
(

−ζ
)

+ F
(

−ζ
)

H
(

ζ
)

= F̆
(

ζ
)

H̆
(

−ζ
)

+ F̆
(

−ζ
)

H̆
(

ζ
)

.

Incorporating the found factorizations of F and H , we obtain

F1
(

ζ
)

F2
(

ζ
)

H1

(

−ζ
)

H2

(

−ζ
)

+ F1
(

−ζ
)

F2
(

−ζ
)

H1

(

ζ
)

H2

(

ζ
)

= ei(α1−α2) e−ζ (t1−t2 )F1
(

−ζ
)

F2
(

ζ
)

H1

(

ζ
)

H2

(

−ζ
)

+ ei(α2−α1 ) e−ζ (t2−t1 )F1
(

ζ
)

F2
(

−ζ
)

H1

(

−ζ
)

H2

(

ζ
)

and thus [
e−iα1 eζ t1 F1

(

ζ
)

H1

(

−ζ
)

− e−iα2 eζ t2 F1
(

−ζ
)

H1

(

ζ
)

]

·

[
eiα1 e−ζ t1 F2

(

ζ
)

H2

(

−ζ
)

− eiα2 e−ζ t2 F2
(

−ζ
)

H2

(

ζ
)

]
= 0.

(9)

Remembering that F1, F2,H1, andH2 are entire functions, we observe that both factors

in (9) are entire functions too, and that at least one of both factors thus has to be con-

stantly zero. In order to investigate the two di�erent cases more precisely, we employ

the explicit construction of the entire functions F1 and F2 in the proof of Proposition 3.4.

Using a similar procedure forH1 andH2, and denoting the sets of all non-vanishing zeros
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of F and H by Ξ1 and Ξ2 respectively, we can represent the four functions by

F1(ζ ) =
∏

ξ j ∈Λ1

(

1 −
ζ

ξ j

)

e
ζ
ξj and F2 (ζ ) = C1 ζ

m1 eζγ1
∏

ξ j ∈Ξ1\Λ1

(

1 −
ζ

ξ j

)

e
ζ
ξ j

and further

H1 (ζ ) =
∏

ηj ∈Λ2

(

1 −
ζ
ηj

)

e
ζ
ηj and H2 (ζ ) = C2 ζ

m2 eζγ2
∏

ηj ∈Ξ2\Λ2

(

1 −
ζ
ηj

)

e

ζ

ηj ,

where Λ1 and Λ2 are appropriate subsets of Ξ1 and Ξ2.

In the following, we �rstly assume that the second factor of (9) is zero, which directly

implies that the equation

(−1)m2 C1C2 e
iα1 ζm1+m2 e−ζ (t1−γ1+γ 2)

∏

ξ j ∈Ξ1\Λ1

(

1 −
ζ

ξ j

)

e
ζ
ξj

∏

ηj ∈Ξ2\Λ2

(

1 −
ζ

−η j

)

e
ζ
−ηj

= (−1)m1 C1C2 e
iα2 ζm1+m2 e−ζ (t2+γ 1−γ2 )

∏

ξ j ∈Ξ1\Λ1

(

1 −
ζ

−ξ j

)

e
ζ

−ξ j

∏

ηj ∈Ξ2\Λ2

(

1 −
ζ

ηj

)

e
ζ
ηj

(10)

holds for every ζ in the complex plane. Since the possibly in�nite products above are

again entire functions by Borel’s theorem [Mar77], the zeros on both sides of the equality

have to coincide. However, due to the assumption that the zeros ξ j and ηj of the Laplace

transforms F and H are pairwise distinct, the zero sets Ξ1 \ Λ1 and Ξ2 \ Λ2 of F2 and H2

have to be invariant under re�ection at the imaginary axis.

Based on this observation, we can immediately conclude that the entire functions F2
and H2 are invariant under re�ection and conjugation up to an additional rotation and

modulation. More precisely, we obtain the identities

F2
(

−ζ
)

= (−1)m1 C1 ζ
m1 e−ζγ 1

∏

ξ j ∈Ξ1\Λ1

(

1 −
ξ

−ξ j

)

e
ζ

−ξ j

= (−1)m1 e−2i argC1 e−2ζℜ[γ1] F2(ζ )

and similarly

H2

(

−ζ
)

= (−1)m2 e−2i argC2 e−2ζℜ[γ2]H2 (ζ ).

Incorporating these identities in the representation of F̆ and H̆ , we can describe the

second solution pair in the frequency domain by

F̆ (ζ ) = (−1)m1 ei(α1+2 argC1 ) e−ζ (t1−2ℜ[γ1]) F
(

−ζ
)
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and

H̆ (ζ ) = (−1)m2 ei(α2+2 argC2 ) e−ζ (t2−2ℜ[γ2]) H
(

−ζ
)

.

Hence, the continuous-time signals f̆ and h̆ are merely rotations and shifts of the re�ec-

ted and conjugated signals f and h.

It remains to prove that the occurring rotations and shifts coincide. For this pur-

pose, we revisit equation (10). Considering that the zeros and hence the possibly in�nite

products on both sides are equal, we can reduce (10) to

(−1)m2 C1C2 e
iα1 e−ζ (t1−γ1+γ 2) = (−1)m1 C1C2 e

iα2 e−ζ (t2+γ 1−γ2 )

or, by rearranging and combining the individual factors, to

(−1)m1 eiα1+2 argC1 e−ζ (t1−2ℜ[γ1])
= (−1)m2 eiα2+2 argC2 e−ζ (t2−2ℜ[γ2]),

which veri�es our conjecture that the second solution pair f̆ and h̆ coincides with the

�rst solution pair f and h up to common trivial ambiguities.

For the second case, where the �rst factor of (9) is constantly zero, an analogous and

slightly simpler argumentation yields the representations

F̆ (ζ ) = eiα1 e−ζ t1 F (ζ ) and H̆ (ζ ) = eiα2 e−ζ t2 H (ζ ),

where the occurring rotations and time shifts again coincide. �

Our last approach to achieve the uniqueness of the continuous-time phase retrieval

problem considered in this section is again the idea of using interference measurements

of the unknown signal with a modulated version of the signal itself. Generalizing the

main results of subsection 2.2, we will establish two di�erent theorems, which show that

each continuous-time signal in L2 with compact support can be uniquely recovered from

an appropriate set of interference measurements.

Theorem 3.10. Let f be a continuous-time signal in L2 with compact support. Then the
signal f can be uniquely recovered up to rotation from its Fourier intensity |F[f ] | and the
interference measurements

���F [
f + ζ −kK eiµ · f

] ��� (k = 0, . . . ,K − 1; µ ∈ M )

for an integer K > 2 and every open neighbourhood M around zero.

Proof. Due to the assumption that the unknown signal f is a square-integrable function

with compact support, the theorem of Paley-Wiener implies that the Fourier transform

F[f ] is the restriction of an entire function and thus has to be continuous. Consequently,
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if the signal f does not vanish everywhere, we can �nd a pointω0 together with an open

neighbourhood where the Fourier transform F[f ] does not vanish.

Similarly to the discrete-time version in Theorem 2.5, the key element of the proof is

to exploit the additional interference measurements | f̂ (·) + ζ −k
K

f̂ (· − µ) | by using the

polarization identity in Lemma 2.3. We obtain

1

K

K−1
∑

k=0

ζ kK
��� f̂ (ω0) + ζ

−k
K f̂ (ω0 − µ)

���2 = f̂ (ω0) f̂ (ω0 − µ)

for every µ in the open set M . Writing the Fourier transform F[f ] in its polar repres-

entation |F[f ] | eiϕ , we can now extract the relative phases ϕ (ω0 − µ) − ϕ (ω0) from

1

K

K−1
∑

k=0

ζ kK
��� f̂ (ω0) + ζ

−k
K f̂ (ω0 − µ)

���2 = ��� f̂ (ω0)
��� ��� f̂ (ω0 − µ)

��� ei(ϕ (ω0−µ )−ϕ (ω0)) .

Like for the discrete-time counterpart, the considered phase retrieval problem can

merely be solved up to rotations. This enables us to de�ne one phase ϕ (ω0) in the fre-

quency domain arbitrarily. Beginning from this initial phase, we can further determine

the complete phase function ϕ and hence the Fourier transform F[f ] in a small open

interval around ω0 by using the extracted relative phases. Since the unknown Fourier

transformF[f ] is the restriction of an entire function as discussed above, the unknown

function F[f ] can be uniquely extended from the small interval to the complete fre-

quency domain. Using the inverse Fourier transform, we �nally obtain the desired signal

f . �

Theorem 3.11. Let f be a continuous-time signal in L2 with compact support. Then the
signal f can be uniquely recovered up to a rotation from its Fourier intensity |F[f ] | and
the interference measurements

���F [
f + eiα1 eiµ · f

] ��� and ���F [
f + eiα2 eiµ · f

] ��� (µ ∈ M )

where α1 and α2 are two real numbers satisfying α1 −α2 , πk for all integers k , and where
M is an open neighbourhood around zero.

Proof. Again, the crucial point to verify the assertion is the extraction of the relative

phase from the given interference measurements. Letting ϕ be the phase function of the

unknown Fourier transform F[f ], and following the lines in the proof of the discrete-

time counterpart (Theorem 2.9), we can determine the values

ℜ
[
ei(ϕ (ω−µ )−ϕ (ω )+α1)

]
and ℜ

[
ei(ϕ (ω−µ )−ϕ (ω )+α2)

]
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and further the relative phase ϕ (ω − µ) − ϕ (ω) whenever F[f ](ω) and F[f ](ω − µ) are

non-zero by solving a linear equation system. Based on the extracted relative phases

ϕ (ω − µ) −ϕ (ω), we now can recover the unknown Fourier transformF[f ] as discussed

in the previous proof of Theorem 3.10. �

Remark 3.12. Since a holomorphic function is completely determined by the function

values on an arbitrary set that has an accumulation point, we can relax the requirements

on M in Theorem 3.10 and Theorem 3.11. In fact, we can replace the condition that M

is an open neighbourhood around zero by the assumption thatM possesses at least one

accumulation point. �
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