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1   Introduction 

Satisfiability (SAT) problems play an important role in operations research, computer science and in 

the area of artificial intelligence. Additionally, they provide important insights into complexity theory. 

SAT problems are binary, i.e. boolean decision problems defined on a number of 0-1 literals, often de-

noted as xj ( j = 1, …, n ) building clauses ( i = 1, …, m ) of literals using logical operators and, or, not. 

Constructing SAT solutions requires finding true or false values for those literals with the objective to 

determine whether an expression is true or not (propositional SAT and formulas, respectively), or to 

maximize the number of true clauses in Max-SAT. This category includes the variants of 2-SAT and 3-

SAT (at most 2 and 3 literals per clause). Special forms are Exact-3-SAT, Not-All-Equal-3-SAT, Horn-

SAT and Xor-SAT. It should be noted that SAT problems are NP-complete (Cook 1971, Levin 1973) 

and that they belong to the general class of constraint satisfaction problems (CSPs).  

Max 3-SAT problems have been the object of many research efforts over the past few decades. They 

remain an important research area today due to their computational challenge and application im-

portance. Applications are reported in diverse areas such as physics (ising models), telecommunica-

tions (frequency assignment), scheduling (satellite scheduling), bioinformatics (protein alignment), 

medical treatment (cancer therapy) and circuit design (debugging, logic synthesis). Other application 

area can be found in the literature as well, e.g. see Larrosa (2008). 

In this research we investigate the use of a penalty function approach for solving these important 

problems. This approach was first proposed in general by Hammer and Rudeanu (1968) and has been 

mentioned more recently in Hansen and Jaumard (1990) and Boros and Hammer (2002). Little evi-

dence appears in the literature, however, regarding the potential usefulness of this approach for actual-

ly solving Max 3-SAT problems. In Kochenberger et al. (2005), this penalty function approach was 

successfully employed to solve a large number of Max 2-SAT problems. The success on this class of 

Max SAT problems motivated our interest here in investigating the effectiveness of the penalty func-

tion approach for the more general Max 3-SAT problem. 

We present a penalty function formulation that is combined with a specific metaheuristic approach, the 

so-called adaptive memory projection (AMP), for solving the nonlinear penalty function. In doing so, 

firstly Section 2 introduces and exemplifies the general penalty idea, followed by Section 3, in which 

the projection framework is outlined and adopted. This section also covers the specification of the 

overall Max 3-SAT multi-start metaheuristic. The computational results are presented and discussed in 

Section 4. Finally, the paper concludes with a summary and an outlook in Section 5. 

 

2   Penalty Function Approach 

Using penalties as an alternative to the explicit imposition of constraints is a frequently employed 

strategy in a variety of problem settings. This approach was successfully employed by Kochenberger 

et al. (2005) for the Max 2-Sat problem, where the penalty function for that class of problems took the 

form of an unconstrained quadratic binary program (UQBP, xQx). Other recently reported applica-

tions of this approach, also taking the form of UQBP, are given in Alidaee et al. (2005). The traditional 

Max 3-SAT problem concerns finding assignments for the true/false literals comprising the clauses 

such that the maximum number of clauses is satisfied. For an LP-formulation, in which the number of 

satisfied clauses is maximized, the reader may be directed to the foundations of Motwani and 

Raghavan (1995). The logical alternative, which we pursue here, is to minimize the number of clauses 

not satisfied via a penalty function approach. Unlike the Max 2-Sat case, where the penalty function 

approach results in an unconstrained quadratic minimization problem, the penalty approach for the 

Max 3-Sat case gives rise to an unconstrained minimization problem in binary variables of a cubic 

penalty function as outlined below. 

We assume a standard Max 3-SAT representation in conjunctive normal form (CNF). For such prob-

lems, there are four possible types of clauses, each with a classical constraint of a “covering” form 

denoting whether or not the clause is satisfied. Associated with each such constraint is a cubic penalty 

function that takes the value 0 for feasible solutions and otherwise is equal to 1. Combining these pen-
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alty functions into an aggregate penalty gives rise to an unconstrained cubic penalty function. Mini-

mizing this function is equivalent to maximizing the number of clauses satisfied. An appropriate pen-

alty function is revealed in the following development. For Max 3-SAT problems, there are four possi-

ble types of clauses corresponding to the number of negotiations within 3 variables. Together with 

their classical constraints and associated cubic penalties, these types are enumerated in Tab. 1. 

 

Negations Classical constraint Equivalent penalty function 

0 1≥++ kji xxx  )1( kjkijikjikji xxxxxxxxxxxx +++−−−−  

1 1≥++ kji xxx  )( kjikjkik xxxxxxxx +−−
 

2 1≥++ kji xxx  )( kjikj xxxxx −
 

3 1≥++ kji xxx  )( kji xxx  

   Tab. 1: MAX 3-SAT constraints and penalties. 

 

As mentioned, each penalty function takes on the value 0 or 1 depending whether or not the classical 

constraint is satisfied or not. The approach, then, is to minimize the sum of the penalty terms and in 

doing so, we minimize the number of clauses not satisfied. If we are able to drive the objective func-

tion to zero, we have a 3-SAT solution, otherwise we have a solution for the Max 3-SAT problem. This 

procedure is illustrated by the following example, an instance with 5 variables and 12 clauses: 

 

321 xxx ∨∨
 

 
432 xxx ∨∨

 
 

542 xxx ∨∨
 

 
543 xxx ∨∨

 

321 xxx ∨∨
 

 
432 xxx ∨∨

 
 

532 xxx ∨∨
 

 
543 xxx ∨∨

 

321 xxx ∨∨
 

 
432 xxx ∨∨

 
 

532 xxx ∨∨
 

 
543 xxx ∨∨

 
 

Summing the penalties for these twelve clauses forms the penalty function: 

 

532543542432321

5432315421

23

342223)(

xxxxxxxxxxxxxxx

xxxxxxxxxxxp

+−−+−

+−+−−+−=
 

 

Minimizing )(xp gives the solution 0,1 54321 ===== xxxxx  for which ,0)( =xp meaning 

that all 12 clauses are satisfied. Each Max 3-SAT penalty, in general, is of the above form, consisting 

of an additive constant plus a number of linear, quadratic and cubic terms. Assuming i < j < k, ranging 

within 1, …, n, with n is the number of variables, and taking all sums over variable indices with non-

zero coefficients, it can be given as ∑∑ ∑ +++= kjiijkjiijii xxxcxxcxccxp )( . This penalty is 

the objective of an unconstrained optimization problem and represents the aggregated number of un-

solved clauses, which has to be minimized. Several remarks are in order here:  

 

• In general, solving the Max 3-Sat problem is equivalent to the problem minimize p(x) with x = 

x1, ..., xn. 

• In forming p(x), several terms from the penalty function, coming from the individual clauses, 

combine and/or cancel, yielding a “reduced” aggregate objective function. 

• Note that p(x) and c are both non-negative, while the linear, quadratic and cubic coefficients 

are unrestricted in sign. 

• The size of the penalty function to be minimized is independent of the number of clauses in 

the original CNF-formulation, depending only on the number of literals (variables) in the orig-

inal problem. Thus, a MAX 3-Sat problem with, e.g., 500 variables and 1000 clauses and an-

other with 500 variables but 20,000 clauses would each give rise to cubic minimization prob-

lems with 500 variables, where the penalty functions differ from one another in their coeffi-

cients. 
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There are several obvious ways to deal with this type of function. Prominent approaches are the solv-

ing of the cubic function with some non-linear solver or the reduction of p(x) to a quadratic function, 

in order to solve it as an unconstrained xQx (e.g. see the work of Boros et al. (1989, 2002), Hansen and 

Jaumard (1990), Crama et al. (1997) and Kochenberger et al. (2005)). However, in the case of the Max 

3-SAT problem, naturally substitutions have to take place to eliminate cubic terms, i.e. variable set-

tings xk := xi xj are needed. The approach of the present paper is a direct application of an approxima-

tion method to the cubic function and, as already noted, originates in the metaheuristic concept called 

adaptive memory programming.  

 

3    Adaptive Memory Projection for Max 3-SAT 

Since minimizing p(x) is in general NP-hard, heuristic methods are most likely needed to find high 

quality solutions in a reasonable amount of computing time. The approach we report on here is a varia-

tion of AMP, originally employed in the context of Integer Linear Programming (Glover 2005). An 

AMP method is designed to exploit what is called the Projection Principle for combinatorial optimiza-

tion. This principle may be successfully applied to problem settings where a good method M is availa-

ble to quickly solve problem P to (near) optimality if P has no more than n* variables, when n* is 

suitably chosen. One can say that an original problem P with n variables is projected onto a problem 

P* by fixing n - n* variables. A consequence of this reduction is that for proper choices of n* the free 

problem P* can be solved more reliably and rapidly. The base idea is to summarize information from a 

small number of high-quality solutions, usually collected in a so-called reference set, in order to (1) 

successfully pass high-quality solution attributes to the projected problem P*, and in order to (2) 

shrink the original problem P, so that its projected residual is smaller, thus making it easier to solve it 

efficiently. Efficiency can have several aspects, e.g. the fact that the overall solution time can be re-

duced or the possibility to enhance solution quality in contrast to a standard algorithmic design. All in 

all, AMP can be understood as problem reduction technique similar to the classical Branch & Bound 

or to more recent developments, like the Core-concept in Puchinger et al. (2006). Each of these tech-

niques relies on a dedicated variable fixing philosophy, the one employed in AMP is population-

based.The overall approach for the solving of Max 3-SAT is a 2-phase approach with both phases built 

to run a straight forward construction heuristic named Basic One-Pass Heuristic (BOPH). In each 

phase BOPH is embedded in a multi-start framework that re-runs this construction procedure. Adap-

tive memory information is gathered in phase-1 by maintaining a reference set, RefSet, of high quality 

solutions to keep track of persistently attractive variables. After termination of phase-1, variables are 

fixed, simultaneously deriving P*, which then is input into the multi-start of phase-2.  

We start with the definition of BOPH which iteratively applies a greedy setting to a specific deci-

sion variable. Influence is measured by a change in p(x). BOPH uses weights α and β to evaluate the 

coefficients of the cubic penalty function mentioned above. These weights are input parameters to the 

procedure and control the search trajectory heuristically. Fig. 1 summarizes this greedy heuristic. 

 

BOPH 

1) Evaluate each variable xj by means of ∑ ∑++= βα /)(/)( ijkijjj ccce , where the sums are 

taken over all terms of the cubic penalty function containing variable xj. 

2) Examine the absolute evaluation values ɛj = | ej | and find the biggest value, i.e. set p = arg max { 

ɛj | j = 1, …, n }. If ep > 0 then set xp = 0, else xp = 1. 

3) Reduce the penalty function to reflect the assignments just made, i.e. eliminate and rearrange 

terms in the objective. 

4) Repeat Steps 1 to 3 with the reduced problem until all variables are fixed. Output the objective 

function value, i.e. the number of the unsolved clauses.  

 

   Fig. 1: Basic-one-pass heuristic BOPH. 
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For 0 < α < β in Step 1 of the above procedure, we are giving less weight to the quadratic terms and 

even less to the cubic ones. Since the maximum choice in the subsequent step depends on the preced-

ing evaluation, different weights generate different solution. We make use of this ability to generate a 

set of diverse quality solutions by means of the multi-start frame, called M-BOPH. The latter iterative-

ly calls BOPH as a sub-routine, using different weights in Step 1 according to a pre-specified (parame-

ter) weighing schedule.  

Next we describe the building of P* between the two phases. This core-process of AMP, i.e. the ex-

ploitation of the aggregated RefSet-information, initializes the so-called referent optimization (com-

pare Glover (2005)). Upon termination of phase-1, a number of b reference set solutions is stored in 

the RefSet = { x(r), r = 1, ..., b }. These solutions are exploited in two steps, determining frequency-

values and the actual reduction from P to P*. Note that n*, the size of the free problem P* is an input 

parameter. Fig. 2 summarizes these two steps.  

 

AMP – Base Reduction Process 

1) Frequencies. For each variable xj (j = 1, …, n) let bj(0) and bj(1) denote the number of solutions 

x(r) in RefSet such that xj(r) = 0 and xj(r) = 1, respectively. (Hence bj(0) + bj(1) = b.) Determine 

bj = Max { bj(0), bj(1) } and index the variables in ascending order of the bj values so that b1 ≤ b2 

≤ … ≤ bn. 

2) Reduction. Determine problem P* by selecting the first n* variables to be free, and fixing the re-

maining variables xj for j = n* + 1, …, n by setting xj = xj* where xj* = 0 if bj = bj(0) and xj* = 1 if 

bj = bj(1).  

 

   Fig. 2: Exploiting the information stored in RefSet. 

 

It should be noted that, in contrast to BOPH, highly-influencing variables are not greedily selected in 

AMP, but are identified in a pool-oriented manner (see Greistorfer and Voß (2005)) using a sort of fre-

quency memory. Since the different elements for our Max 3-SAT approach now are sufficiently de-

fined, the overall procedure can be put together in Fig.3. 

  

M-BOPH and AMP for Max 3-SAT, a 2-phases approach 

1) Input data, a weighing schedule for α and β, RefSet-size b and the dimension of the free problem, 

n*. 

2) Phase-1. While doing M-BOPH with the full instance P, i.e. with x = xj , .., xn, maintain a refer-

ence set RefSet of size b. Stop whenever the best solution found so far has a value p( xbest ) = 0. 

3) Build P* using the AMP – Base Reduction Process, i.e. determine fixed variables and the re-

duced vector x*. 

4) Phase-2. Perform M-BOPH with the reduced Problem P* (while keeping xn*+1, …, xn* in each it-

eration constant and fixed) to get solution values for x* = x1, …, xn*. Again, stop if a p( xbest ) = 0 

is reached. 

5) Output the overall result as the combined solution from phases 1 and 2, i.e. the combination of the 

fixed variables of Step 3 and the best solution found in Step 4. 

 

   Fig. 3: Overall Max 3-SAT approach. 

 

For the maintenance of the RefSet the procedure uses a standard reference set update method with du-

plication checks as described in Glover (1998). Steps 1, 3 and 5 are computationally inexpensive, so 

the overall computing time mainly depends on the number of BOPH-calls in the M-BOPHs of Step 2 

and 4. The phase-1-termination stated (and termination of the whole process) is obvious. In contrast, 

there are lots of termination criteria available if the zero-minimum is not reached. These include so-
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phisticated ones, e.g. with the use of convergence measures applied to the results in the RefSets. For 

the application tested, the number of M-BOPH iterations was simply bounded with the number of the 

(α, β)-variations determined by the weighing schedule. This schedule, as well as the remaining param-

eters, will be given in the next section. 

 

4   Computational Experience 

The hardware used to test the metaheuristic introduced was a Lenovo T61p with an Intel Core2Duo 

T9500 at 2.6GHz and 3GB RAM with a 32-Bit Windows-Vista Ultimate OS, 2007, SP1. The code was 

programmed in C/C++ and compiled with MingW32 and GNU gcc using the Codeblocks 12.11 IDE. 

Computational tests were performed on 72 artificially generated random 3-SAT instances (“aim”) from 

the DIMACS benchmark set for SAT problems (Asahiro et al. 1996). Their sizes n range from 50 to 

200 variables with m between 80 to 1200 clauses (see Tab. 2).  

 

(1) (2) (3) (4) 

group n # m 

aim-50  50 24 80 100 170 300 

aim-100 100 24 160 200 340 600 

aim-200 200 24 320 400 680 1200 

 

Tab. 2: Structure of the test set. 

 

In provide a means for comparisons, additionally we formulated each instance as a linear 0-1 program 

and found optimal solutions using CPLEX. For this purpose, the formulation of Givry et al. (2003) 

was used. Since our test problems are of modest size, the solver had little trouble optimally solving 

each instance, giving us a benchmark for comparison. 

After some preliminary testing, the weighing schedule used for the M-BOPH was set at an ad-hoc 

basis: weights (α, β) are determined as 100 combinations of α = 1, 2, …, each of it combined with a β 

= 2, …, 10, giving BOPH input parameters (1,2) ,(1,3), … (1,10); (2,2), (2,3), …, (2,10); … The num-

ber of these weight settings is equivalent to the number of BOPH-calls, which implies 100 plus 100 

overall iterations (in phase-1 plus phase-2) before termination the whole algorithm. Again, after short 

experimental studies, the size of the RefSet, b, was set to 10, while the free problem size turned out to 

be preferably a function of the problem size, i.e. n* = int( 0.85 n ).  

The detailed computational results for all instances are given in Tab. 3. Basically, in all tables the vari-

able C (“cost”) stands for the objective function value, i.e. the number auf unsatisfied clauses, repre-

sented by the value of the penalty function p(x).  

Following the problem name, the number of clauses and the number of variables in columns (1) to 

(3), we give the CPLEX outcome of the linear programming formulation, i.e. the known optimal solu-

tion value in (4) and the CPU seconds in (5), both values used for evaluation purposes. Columns (6) to 

(12) summarize the results for the M-BOPH-AMP-approach: C1* and C2*, in (6) and (8), are the ob-

jective function values calculated in phases 1 and 2, while k1* and k2*, in (7) and (9), are their respec-

tive best iterations (of a total of 100 in each phase) and show, when the values of C1* and C2* were 

obtained. Note that there exist some not-available-entries, “-”, in (8) and (9) which means that no 

phase-2 was active for that instance, since the M-POPH of phase-1 already obtained a proven optimal 

result of C1* = 0. Finally, (10), for the sake of clearance repeats the best result achieved, followed by 

the best phase and the total CPU-time for the metaheuristic introduced in (11) and (12). 

 

< preferably insert Tab. 3 here > 

 

For the discussion of the results’ quality we refer to the (aggregated) group-results of Tab. 4, which 

counts the number of optimal solutions reached and shows the improvement between the two phases. 

The upper part, columns (2) to (7), presents the (absolute) counts, whereas the lower one, with corre-

sponding columns (8) to (13), gives the same information in terms of (relative) percentages.  
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< preferably insert Tab. 4 here > 

 

The first observation, deductible from (2) of Tab.4, is that the number of optimal solutions (either 

reached in phase-1 or phase-2) is quite acceptable with 33 (of 72, i.e. 45.8%), above all, since it was 

not the prime intention of this study to develop a competitive state-of-the-art algorithm. However, the 

main research topic, the usefulness of the multi-start-framework implemented with M-BOPH and split 

into two phases with the AMP-reduction in between, can be clearly manifested with the entries of the 

next columns, (3) to (7).  

Firstly, the amount of optimal solutions already reached with the first M-BOPH application is visi-

ble in (3), a fact that is underlined by the best phase-1-iterations, k1*, of Tab. 3, which are widely 

spread between their theoretic boundaries 1 and 100, with values between 10 and 91 (see column (7) 

of the preceding table, Tab. 3). Note that these entries of (3) in Tab. 4 are based on an ex-post observa-

tion, a comparison of C1 with CPLEX’ solution values. Naturally, during the run of the AMP-

approach, after termination of phase-1, this knowledge is not accessible for the heuristic. So the prob-

lem reduction in Step 3 of the overall approach and the subsequent M-BOPH-run of phase-2 have to 

be performed whenever phase-1 terminates with a p( xbest ) > 0. These cases are counted in column (4) 

of Tab. 4. The high total number of phase-2-runs (68 of 72, 94.4%) and its apparent correlation with 

the attractive outcome can be seen as second advantage of the approach: said outcome, shown in col-

umns (5), the number of improvements in phase-2 upon phase-1 (including tiebreaks), and (6), the 

number of exclusive improvements in phase-2 upon phase-1, is considerably high. The objective func-

tion value of 57 of 68 instances, i.e. 83.8% of all cases, did not deteriorate, which means that the fix-

ing of variables and the forwarding of a reduced problem to phase-2 was indeed productive. Even 

more, in almost one third (compare the last entry in (12)) the AMP-approach could outmatch the plain 

M-BOPH of phase-1 and provide a better result. Thirdly and finally, there is a significant amount of 

problems, 8.8%, for which not only an improvement, but also the optimal solution could be reached by 

the exclusive help of phase-2 (see (7) and (13)). 

As emphasized, the goal of this research was to demonstrate the usefulness of an AMP-related ap-

proach to improve a plain heuristic search algorithm. However, even if not directly targeted as a re-

search topic, we extend the discussion of the computational results with a short remark regarding the 

CPLEX-gap. For the three groups of instances, aim-50, aim-100 and aim-200, the relative gap between 

the optimal solution and the heuristic solution obtained with the AMP-approach is on average 0.52%, 

0.47% and 0.56%. (Note, due to zero-optimal-solutions, the gap is not calculated with the base 

CPLEX but standardized with the total number of clauses.) The median, average and maximum gap, 

with respect to the overall test set, is 0.31%, 0.52% and 2.83%, which appears to be a solid series of 

small to moderate deviations.  

Finally, we conclude with an observation of the running times. CPLEX was run on a different ma-

chine, a 2.2 GHz Pentium Celeron PC. In order to accurately compare the CPU usage, we refer to the 

Standard Performance Evaluation Corporation (2014) and their SPEC CPU2006 benchmark suite, 

assigning a CFP2006 base result of 21.8 for the CPLEX-PC and a comparative value of 16.5 for the 

AMP-notebook. The average group running times of the AMP-approach are 4.1, 28.3 and 212.5 se-

conds with a total of 244.9 seconds. This translates to benchmarked CPLEX-times of 7.0, 24.0 and 

607.9 with a total of 638.8 seconds. The fact that the heuristic is a little slower for the middle group, 

aim-100, is positively contradicted by the superior running time performance in aim-50 and aim-100, 

where the AMP-times improve over CPLEX with 42% and 65%. All in all, the metaheuristic total run-

ning time could be reduced to 38% of the LP-CPLEX approach. 
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Name      m n 
CPLEX AMP 

Copt sec.  C1*  k1*  C2*  k2*   C*  p*   sec. 

aim-50-1_6-no-1 80 50 1 0.22 1 19 1 1 1 2 0.17 

aim-50-1_6-no-2 80 50 1 0.27 1 19 1 1 1 2 0.17 

aim-50-1_6-no-3 80 50 1 0.36 1 25 1 10 1 2 0.17 

aim-50-1_6-no-4 80 50 1 0.11 1 21 1 1 1 2 0.17 

aim-50-1_6-yes1-1 80 50 0 0.22 1 17 1 1 1 2 0.17 

aim-50-1_6-yes1-2 80 50 0 0.25 1 15 1 1 1 2 0.17 

aim-50-1_6-yes1-3 80 50 0 0.13 1 13 1 10 1 2 0.17 

aim-50-1_6-yes1-4 80 50 0 0.16 1 15 1 13 1 2 0.19 

aim-50-2_0-no-1 100 50 1 0.22 1 21 1 1 1 2 0.2 

aim-50-2_0-no-2 100 50 1 0.56 1 15 1 12 1 2 0.19 

aim-50-2_0-no-3 100 50 1 0.11 1 21 1 2 1 2 0.19 

aim-50-2_0-no-4 100 50 1 0.48 1 22 1 1 1 2 0.19 

aim-50-2_0-yes1-1 100 50 0 0.13 1 35 1 10 1 2 0.19 

aim-50-2_0-yes1-2 100 50 0 0.13 2 26 1 12 1 2 0.19 

aim-50-2_0-yes1-3 100 50 0 0.06 1 11 2 11 1 1 0.19 

aim-50-2_0-yes1-4 100 50 0 0.13 1 10 1 15 1 2 0.19 

aim-50-3_4-yes1-1 170 50 0 0.19 2 13 1 11 1 2 0.23 

aim-50-3_4-yes1-2 170 50 0 0.33 1 12 3 12 1 1 0.23 

aim-50-3_4-yes1-3 170 50 0 0.08 1 13 2 3 1 1 0.23 

aim-50-3_4-yes1-4 170 50 0 0.42 4 16 3 12 3 2 0.22 

aim-50-6_0-yes1-1 300 50 0 0.06 0 11 - - 0 1 0 

aim-50-6_0-yes1-2 300 50 0 0.23 3 22 0 13 0 2 0.27 

aim-50-6_0-yes1-3 300 50 0 0.09 0 12 - - 0 1 0 

aim-50-6_0-yes1-4 300 50 0 0.36 0 11 - - 0 1 0 

aim-100-1_6-no-1 160 100 1 0.44 1 56 1 4 1 2 1.09 

aim-100-1_6-no-2 160 100 1 0.55 1 27 1 11 1 2 1.04 

aim-100-1_6-no-3 160 100 1 0.95 1 19 1 1 1 2 1.11 

aim-100-1_6-no-4 160 100 1 0.19 1 16 1 1 1 2 1.04 

aim-100-1_6-yes1-1 160 100 0 0.41 2 27 2 12 2 2 1.11 

aim-100-1_6-yes1-2 160 100 0 0.42 1 24 2 11 1 1 1.12 

aim-100-1_6-yes1-3 160 100 0 0.22 2 25 1 10 1 2 1.09 

aim-100-1_6-yes1-4 160 100 0 1.28 1 12 2 1 1 1 1.04 

aim-100-2_0-no-1 200 100 1 0.30 1 17 1 11 1 2 1.25 

aim-100-2_0-no-2 200 100 1 1.09 1 27 1 11 1 2 1.2 

aim-100-2_0-no-3 200 100 1 0.50 1 44 1 1 1 2 1.22 

aim-100-2_0-no-4 200 100 1 1.22 1 91 1 1 1 2 1.22 

aim-100-2_0-yes1-1 200 100 0 0.53 2 15 2 11 2 2 1.2 

aim-100-2_0-yes1-2 200 100 0 1.05 2 27 1 13 1 2 1.22 

aim-100-2_0-yes1-3 200 100 0 0.44 2 18 3 12 2 1 1.19 

aim-100-2_0-yes1-4 200 100 0 0.36 2 16 1 11 1 2 1.23 

aim-100-3_4-yes1-1 340 100 0 0.36 3 21 7 11 3 1 1.36 

aim-100-3_4-yes1-2 340 100 0 1.41 5 13 5 21 5 2 1.34 

aim-100-3_4-yes1-3 340 100 0 2.63 5 16 4 15 4 2 1.34 
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aim-100-3_4-yes1-4 340 100 0 1.59 6 25 5 10 5 2 1.34 

aim-100-6_0-yes1-1 600 100 0 0.34 0 14 - - 0 1 0 

aim-100-6_0-yes1-2 600 100 0 0.72 6 12 0 11 0 2 1.51 

aim-100-6_0-yes1-3 600 100 0 0.44 2 13 1 11 1 2 1.5 

aim-100-6_0-yes1-4 600 100 0 0.69 4 13 0 11 0 2 1.51 

aim-200-1_6-no-1 320 200 1 0.20 1 18 1 11 1 2 7.96 

aim-200-1_6-no-2 320 200 1 1.13 1 16 1 10 1 2 7.88 

aim-200-1_6-no-3 320 200 1 1.59 2 17 1 12 1 2 7.91 

aim-200-1_6-no-4 320 200 1 1.36 1 18 1 1 1 2 8.08 

aim-200-1_6-yes1-1 320 200 0 0.58 1 24 2 23 1 1 7.82 

aim-200-1_6-yes1-2 320 200 0 1.34 2 13 2 11 2 2 7.54 

aim-200-1_6-yes1-3 320 200 0 1.36 1 15 1 11 1 2 7.52 

aim-200-1_6-yes1-4 320 200 0 1.13 1 12 1 11 1 2 7.78 

aim-200-2_0-no-1 400 200 1 1.20 1 12 1 11 1 2 8.6 

aim-200-2_0-no-2 400 200 1 3.95 1 16 2 11 1 1 8.7 

aim-200-2_0-no-3 400 200 1 1.16 1 15 2 13 1 1 8.78 

aim-200-2_0-no-4 400 200 1 1.06 1 27 1 12 1 2 8.88 

aim-200-2_0-yes1-1 400 200 0 6.86 3 13 3 12 3 2 8.42 

aim-200-2_0-yes1-2 400 200 0 2.14 3 15 3 13 3 2 8.63 

aim-200-2_0-yes1-3 400 200 0 1.16 4 15 2 12 2 2 8.58 

aim-200-2_0-yes1-4 400 200 0 2.38 4 17 3 12 3 2 8.53 

aim-200-3_4-yes1-1 680 200 0 59.78 14 18 11 13 11 2 9.45 

aim-200-3_4-yes1-2 680 200 0 80.97 11 12 12 15 11 1 9.63 

aim-200-3_4-yes1-3 680 200 0 48.44 12 25 8 18 8 2 9.59 

aim-200-3_4-yes1-4 680 200 0 51.03 12 13 11 12 11 2 9.58 

aim-200-6_0-yes1-1 1200 200 0 46.06 29 27 2 12 2 2 10.7 

aim-200-6_0-yes1-2 1200 200 0 56.81 24 26 0 11 0 2 10.6 

aim-200-6_0-yes1-3 1200 200 0 82.47 35 14 34 16 34 2 10.6 

aim-200-6_0-yes1-4 1200 200 0 5.94 17 25 0 11 0 2 10.7 

 

Tab. 3: Detailed results. 

 

 

(1) (2) (3) (4) (5) (6) (7) 

group  C = Copt C1 = Copt
  phase-2 

 (C1 > 0) 

C2 ≤

C1
C2 < C1 

 C2opt 

 (C1 > 0) 

aim-50 12 11 21 18 4 1 

aim-100 11 9 23 19 8 2 

aim-200 10 7 24 20 10 3 

sum (#) 33 27 68 57 22 6 

  

  (8) (9) (10) (11) (12) (13) 

aim-50 16.7% 15.3% 29.2% 26.5% 5.9% 1.5% 

aim-100 15.3% 12.5% 31.9% 27.9% 11.8% 2.9% 

aim-200 13.9% 9.7% 33.3% 29.4% 14.7% 4.4% 

rel. (%) 45.8% 37.5% 94.4% 83.8% 32.4% 8.8% 

 

Tab. 4: Aggregated results – optima and improvements. 
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5   Conclusion 

In this paper we have experimented with a simple multi-start heuristic, utilizing variants of adaptive 

memory projection whose base tools are pools of high-quality solutions, so-called reference sets, from 

which information is drawn to help guide the search process. In our approach a fast greedy heuristic 

(BOPH) is embedded in a multi-start-framework (M-BOPH), running M-BOPH in two subsequent 

phases. In between these phases, according to the principles of AMP, a problem reduction process is 

applied, giving the advantage that the problem can be solved more efficiently. This approach quickly 

produced high quality solutions to a test bed of modest sized test problems. Comparisons of solution 

quality were made possible via optimal solutions computed with CPLEX.  

All told, our results indicate that the approach is viable and holds promise as a competitive meth-

odology for solving the general binary problems. Also, the method has proved being quite an attractive 

way to tackle Max 3-SAT. However, our results also indicate that there is apparently much room for 

improvements. Possibilities for future improvement include exploring different settings for (α,β), ad-

vanced weighing schedules, which might be controlled by an adaptive memory-oriented mechanism, 

and more sophisticated base-procedures. Also, more ambitious AMP core-procedures could be devel-

oped, like the clustering of the reference set, which could be able to supply more focused variable fix-

ings. 

In addition, we have carried out preliminary tests involving the conversion of the cubic penalty 

function into an equivalent quadratic penalty function and then solving the quadratic problem via well-

developed metaheuristics designed for UQBP models and MAX 2-Sat approaches, respectively. These 

avenues for further investigation are a part of our on-going research agenda. 
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