

Artifact-Free JPEG Decompression with Total Generalized Variation

Martin Holler and Kristian Bredies

Institute for Mathematics and Scientific Computing Karl-Franzens University Graz

Supported by FWF Grant F3202-N18

JPEG Compression/Decompression

The JPEG standard:

- JPEG is the most common lossy compression standard for digital images.
- It allows a high compression rate but leads to artifacts (noise) in the standard reconstruction due to loss of image data.

JPEG Compression/Decompression

The JPEG standard:

- JPEG is the most common lossy compression standard for digital images.
- It allows a high compression rate but leads to artifacts (noise) in the standard reconstruction due to loss of image data.

TGV-based reconstruction of JPEG compressed images:

- The method uses any given JPEG file to uniquely determine the set of all possible source images.
- It then applies the TGV functional to particularly choose one of these possible source images and with that obtain a highly improved reconstruction. This is realized by an iterative process. The reconstructed image can then be displayed or saved to hard disk in higher quality.

JPEG Compression/Decompression

The IPEG standard:

- JPEG is the most common lossy compression standard for digital images.
- It allows a high compression rate but leads to artifacts (noise) in the standard reconstruction due to loss of image data.

TGV-based reconstruction of JPEG compressed images:

- The method uses any given JPEG file to uniquely determine the set of all possible source images.
- It then applies the TGV functional to particularly choose one of these possible source images and with that obtain a highly improved reconstruction. This is realized by an iterative process. The reconstructed image can then be displayed or saved to hard disk in higher quality.

TGV-based reconstruction

Standard reconstruction.

UNI GRAZ

Advantages of the TGV-Based Method

- It allows to obtain a highly improved reconstruction of any given JPEG compressed image.
- It removes noise and yields a clean image without over-smoothing sharp edges.
- It is ensured that the reconstruction always fits to the given data, no data modifications take place.
- No user input is necessary, the standard settings are suitable for any kind of image.
- It directly operates on the JPEG source data, standard JPEG compressed data can be used.
- It is an iterative process that can be stopped at any time.
- Is not a filter-type method, higher iteration numbers do not over-smooth the image.
- Is a fast reconstruction method that has already been implemented in parallel for the GPU.

Standard reconstruction.

TGV-based reconstruction after 0.06 Seconds, 50 Iterations (GPU).

TGV-based reconstruction after 0.6 Seconds, 500 Iterations (GPU).

Advantages of the TGV-Based Method

- It allows to obtain a highly improved reconstruction of any given JPEG compressed image.
- It removes noise and yields a clean image without over-smoothing sharp edges.
- It is ensured that the reconstruction always fits to the given data, no data modifications take place.
- No user input is necessary, the standard settings are suitable for any kind of image.
- It directly operates on the JPEG source data, standard JPEG compressed data can be used.
- It is an iterative process that can be stopped at any time.
- Is not a filter-type method, higher iteration numbers do not over-smooth the image.
- Is a fast reconstruction method that has already been implemented in parallel for the GPU.

Computation times of the TGV-based reconstruction method. Time in seconds for 500 iterations and different image sizes:

Device	512 imes 512	1600 imes 1200	3200 imes 2400
CPU AMD Phenom 9950	14.16	131.85	406.09
GPU Quadro FX 3700	2.46	17.76	¹
GPU Nvidia GTX 280	1.1	5.11	¹
GPU Nvidia GTX 580	0.6	3.3	12.85

A Test-Applet for the TGV-Based Method

- An interactive applet to test the TGV-based reconstruction method is available.
- It uses multi-core CPU and GPU implementations to obtain the reconstruction.
- It allows to save the improved reconstruction and to compare it with the standard reconstruction.

Standard decompression (Image from http://topbrasilturismo.wordpress.com/)

TGV-based decompression (Image from http://topbrasilturismo.wordpress.com/)

anaste za po

Standard decompression

TGV-based decompression

Contact and Patent Information

Scientific contact:

- Martin Holler (Developer) Institute for Mathematics and Scientific Computing Karl-Franzens University Graz Heinrichstraße 36, A-8010 Graz Phone:+43 316 380 5156 Mail: martin.holler@uni-graz.at
- Kristian Bredies (Developer) Institute for Mathematics and Scientific Computing Karl-Franzens University Graz Heinrichstraße 36, A-8010 Graz Phone: +43 316 380 5158 Mail: kristian.bredies@uni-graz.at

Patent Status:

Applied for European patent 2011

Cooperation Options:

Licence agreement, assignment

Business Contact:

 Michael Freidl (Business Development) Intellectual Property Rights Office of Research Management and Service Karl-Franzens University Graz Universitaetsplatz 3, A-8010 Graz Phone: +43 316 380-3994 Mail: michael.freidl@uni-graz.at Web: www.uni.graz.at/de/forschen/fms